In this paper we deal with polar code automorphisms that are beneficial under low-latency automorphism ensemble (AE) decoding, and we propose polar code designs that have such automorphisms. Successive-cancellation (SC) decoding and thus SC-based AE decoding are invariant with respect to the only known polar code automorphisms, namely those of the lower-triangular affine (LTA) group. To overcome this problem, we provide methods to determine whether a given polar code has non-LTA automorphisms and to identify such automorphisms. Building on this, we design specific polar codes that admit automorphisms in the upper-diagonal linear (UTL) group, and thus render SC-based AE decoding effective. Demonstrated by examples, these new polar codes under AE decoding outperform conventional polar codes under SC list decoding in terms of error rate, while keeping the latency comparable to SC decoding. Moreover, state-of-the-art BP-based permutation decoding for polar codes is beaten by BP-based AE thanks to this design.

Polar Codes for Automorphism Ensemble Decoding

Bioglio, V
Co-first
;
2021-01-01

Abstract

In this paper we deal with polar code automorphisms that are beneficial under low-latency automorphism ensemble (AE) decoding, and we propose polar code designs that have such automorphisms. Successive-cancellation (SC) decoding and thus SC-based AE decoding are invariant with respect to the only known polar code automorphisms, namely those of the lower-triangular affine (LTA) group. To overcome this problem, we provide methods to determine whether a given polar code has non-LTA automorphisms and to identify such automorphisms. Building on this, we design specific polar codes that admit automorphisms in the upper-diagonal linear (UTL) group, and thus render SC-based AE decoding effective. Demonstrated by examples, these new polar codes under AE decoding outperform conventional polar codes under SC list decoding in terms of error rate, while keeping the latency comparable to SC decoding. Moreover, state-of-the-art BP-based permutation decoding for polar codes is beaten by BP-based AE thanks to this design.
2021
IEEE Information Theory Workshop (ITW)
Kanazawa, Japan
17-21 ottobre 2021
proceedings of ITW 2021
IEEE
1
6
978-1-6654-0312-2
Polar codes; code automorphism; successive cancellation; list decoding; permutation decoding; code design
Pillet, C; Bioglio, V; Land, I
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1889033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 0
social impact