: Multiple myeloma is characterized by heterogeneity in clinical presentation, response to treatment, and importantly, patient outcomes. The translocation of chromosomes 11 and 14 [t(11;14)(q13;32)], hereafter referred to as t(11;14), is the most common primary translocation event in multiple myeloma, occurring in approximately 16%-24% of patients. Multiple myeloma harboring t(11;14) represents a unique disease subset as t(11;14)-positive myeloma cells exhibit biological features that are distinct from t(11;14)-negative myeloma cells, including overexpression of cyclin D1, higher levels of the antiapoptotic protein BCL-2, and the frequent expression of the B-cell lineage protein CD20. Additionally, t(11;14) is associated with less common clinical features, such as immunoglobulin M and light chain disease. With the evolution of the treatment landscape, the prognostic significance of t(11;14) multiple myeloma remains debatable. However, it is clear that t(11;14) multiple myeloma represents a distinct subset and a rare opportunity for targeted therapy with BCL-2 inhibition. In this review, we first describe the underlying biology of t(11;14) multiple myeloma cells, then summarize the body of literature evaluating the prognosis of patients with t(11;14) multiple myeloma, and finally discuss therapeutic implications.
Multiple myeloma with t(11;14): unique biology and evolving landscape
Gay, Francesca;
2022-01-01
Abstract
: Multiple myeloma is characterized by heterogeneity in clinical presentation, response to treatment, and importantly, patient outcomes. The translocation of chromosomes 11 and 14 [t(11;14)(q13;32)], hereafter referred to as t(11;14), is the most common primary translocation event in multiple myeloma, occurring in approximately 16%-24% of patients. Multiple myeloma harboring t(11;14) represents a unique disease subset as t(11;14)-positive myeloma cells exhibit biological features that are distinct from t(11;14)-negative myeloma cells, including overexpression of cyclin D1, higher levels of the antiapoptotic protein BCL-2, and the frequent expression of the B-cell lineage protein CD20. Additionally, t(11;14) is associated with less common clinical features, such as immunoglobulin M and light chain disease. With the evolution of the treatment landscape, the prognostic significance of t(11;14) multiple myeloma remains debatable. However, it is clear that t(11;14) multiple myeloma represents a distinct subset and a rare opportunity for targeted therapy with BCL-2 inhibition. In this review, we first describe the underlying biology of t(11;14) multiple myeloma cells, then summarize the body of literature evaluating the prognosis of patients with t(11;14) multiple myeloma, and finally discuss therapeutic implications.File | Dimensione | Formato | |
---|---|---|---|
[Published Vsn] Bal et al - 2022 - Am J of Cancer Res - Multiple myeloma with t11 14.pdf
Accesso aperto
Dimensione
342.75 kB
Formato
Adobe PDF
|
342.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.