We study existence and properties of ground states for the nonlinear Schrödinger equation with combined power nonlinearities −Δu=λu+μ|u|q−2u+|u|2javax.xml.bind.JAXBElement@4d419c48−2uin RN, N≥3, having prescribed mass ∫RN|u|2=a2, in the Sobolev critical case. For a L2-subcritical, L2-critical, of L2-supercritical perturbation μ|u|q−2u we prove several existence/non-existence and stability/instability results. This study can be considered as a counterpart of the Brezis-Nirenberg problem in the context of normalized solutions, and seems to be the first contribution regarding existence of normalized ground states for the Sobolev critical NLSE in the whole space RN.

Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case

Soave N.
2020-01-01

Abstract

We study existence and properties of ground states for the nonlinear Schrödinger equation with combined power nonlinearities −Δu=λu+μ|u|q−2u+|u|2javax.xml.bind.JAXBElement@4d419c48−2uin RN, N≥3, having prescribed mass ∫RN|u|2=a2, in the Sobolev critical case. For a L2-subcritical, L2-critical, of L2-supercritical perturbation μ|u|q−2u we prove several existence/non-existence and stability/instability results. This study can be considered as a counterpart of the Brezis-Nirenberg problem in the context of normalized solutions, and seems to be the first contribution regarding existence of normalized ground states for the Sobolev critical NLSE in the whole space RN.
2020
279
6
108610
108652
https://arxiv.org/pdf/1901.02003.pdf
Combined nonlinearities; Critical nonlinear Schrödinger equation; Normalized ground states; Pohozaev manifold
Soave N.
File in questo prodotto:
File Dimensione Formato  
Soa JFA 2020.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 720.21 kB
Formato Adobe PDF
720.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SoaCritNLSRevision.pdf

Accesso aperto

Descrizione: Versione finale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 492.87 kB
Formato Adobe PDF
492.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1895294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 206
  • ???jsp.display-item.citation.isi??? 210
social impact