We study different algebraic and geometric properties of Heisenberg invariant Poisson polynomial quadratic algebras. We show that these algebras are unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras qn,k(ε) are the main important example. We classify all quadratic H-invariant Poisson tensors on ℂn with n ≤ 6 and show that for n ≤ 5 they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson algebras or with their certain degenerations. © 2010 Springer.
On the Heisenberg Invariance and the Elliptic Poisson Tensors
ORTENZI, GIOVANNI;
2011-01-01
Abstract
We study different algebraic and geometric properties of Heisenberg invariant Poisson polynomial quadratic algebras. We show that these algebras are unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras qn,k(ε) are the main important example. We classify all quadratic H-invariant Poisson tensors on ℂn with n ≤ 6 and show that for n ≤ 5 they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson algebras or with their certain degenerations. © 2010 Springer.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ORT1-H-inv.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
234.94 kB
Formato
Adobe PDF
|
234.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.