We study different algebraic and geometric properties of Heisenberg invariant Poisson polynomial quadratic algebras. We show that these algebras are unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras qn,k(ε) are the main important example. We classify all quadratic H-invariant Poisson tensors on ℂn with n ≤ 6 and show that for n ≤ 5 they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson algebras or with their certain degenerations. © 2010 Springer.

On the Heisenberg Invariance and the Elliptic Poisson Tensors

ORTENZI, GIOVANNI;
2011-01-01

Abstract

We study different algebraic and geometric properties of Heisenberg invariant Poisson polynomial quadratic algebras. We show that these algebras are unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras qn,k(ε) are the main important example. We classify all quadratic H-invariant Poisson tensors on ℂn with n ≤ 6 and show that for n ≤ 5 they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson algebras or with their certain degenerations. © 2010 Springer.
2011
96
1-3
263
284
Heisenberg group; Poisson algebras; Sklyanin elliptic algebras; unimodular class; Mathematical Physics; Statistical and Nonlinear Physics
ORTENZI, GIOVANNI; Rubtsov, V; Pelap, S.
File in questo prodotto:
File Dimensione Formato  
ORT1-H-inv.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 234.94 kB
Formato Adobe PDF
234.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1895741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact