We consider the mass-critical non-linear Schrödinger equation on non-compact metric graphs. A quite complete description of the structure of the ground states, which correspond to global minimizers of the energy functional under a mass constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387-406.], where it is proved that existence and properties of ground states depend in a crucial way on both the value of the mass, and the topological properties of the underlying graph. In this paper we address cases when ground states do not exist and show that, under suitable assumptions, constrained local minimizers of the energy do exist. This result paves the way to the existence of stable solutions in the time-dependent equation in cases where the ground state energy level is not achieved.

Local minimizers in absence of ground states for the critical NLS energy on metric graphs

Soave N.;Verzini G.
2021-01-01

Abstract

We consider the mass-critical non-linear Schrödinger equation on non-compact metric graphs. A quite complete description of the structure of the ground states, which correspond to global minimizers of the energy functional under a mass constraint, is provided by Adami, Serra and Tilli in [R. Adami, E. Serra and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs. Comm. Math. Phys. 352 (2017), 387-406.], where it is proved that existence and properties of ground states depend in a crucial way on both the value of the mass, and the topological properties of the underlying graph. In this paper we address cases when ground states do not exist and show that, under suitable assumptions, constrained local minimizers of the energy do exist. This result paves the way to the existence of stable solutions in the time-dependent equation in cases where the ground state energy level is not achieved.
2021
151
2
705
733
https://arxiv.org/pdf/1909.11533.pdf
L^2-critical exponent; non-compact metric graphs; non-linear Schrödinger equation; Normalized solutions
Pierotti D.; Soave N.; Verzini G.
File in questo prodotto:
File Dimensione Formato  
PSV_graph.pdf

Accesso riservato

Dimensione 252.12 kB
Formato Adobe PDF
252.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PieSoaVer Edinb 2021.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 285.89 kB
Formato Adobe PDF
285.89 kB Adobe PDF Visualizza/Apri
PieSoaVer Edinburgh 2021.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 563.08 kB
Formato Adobe PDF
563.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1896513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact