: The Fe content and the morphometry of asbestos are two major factors linked to its toxicity. This study explored the use of microbe-mineral interactions between asbestos (and asbestos-like) minerals and thermophilic chemolithoautotrophic microorganisms as possible mineral dissolution treatments targeting their toxic properties. The removal of Fe from crocidolite was tested through chemolithoautotrophic Fe(III) reduction activities at 60°C. Chrysotile and tremolite-actinolite were tested for dissolution and potential release of elements like Si and Mg through biosilicification processes at 75°C. Our results show that chemolithoautotrophic Fe(III) reduction activities by Deferrisoma palaeochoriense were supported with crocidolite as the sole source of Fe(III) used as a terminal electron acceptor during respiration. Microbial Fe(III) reduction activities resulted in higher Fe release rates from crocidolite in comparison to previous studies on Fe leaching from crocidolite through Fe assimilation activities by soil fungi. Evidence of biosilicification in Thermovibrio ammonificans did not correspond with increased Si and Mg release from chrysotile or tremolite-actinolite dissolution. However, overall Si and Mg release from chrysotile into our experimental medium outmatched previously reported capabilities for Si and Mg release from chrysotile by fungi. Differences in the profiles of elements released from chrysotile and tremolite-actinolite during microbe-mineral experiments with T. ammonificans underscored the relevance of underlying crystallochemical differences in driving mineral dissolution and elemental bioavailability. Experimental studies targeting the interactions between chemolithoautotrophs and asbestos (or asbestos-like) minerals offer new access to the mechanisms behind crystallochemical mineral alterations and their role in the development of tailored asbestos treatments. IMPORTANCE We explored the potential of chemosynthetic microorganisms growing at high temperatures to induce the release of key elements (mainly iron, silicon, and magnesium) involved in the known toxic properties (iron content and fibrous mineral shapes) of asbestos minerals. We show for the first time that the microbial respiration of iron from amphibole asbestos releases some of the iron contained in the mineral while supporting microbial growth. Another microorganism imposed on the two main types of asbestos minerals (serpentines and amphiboles) resulted in distinct elemental release profiles for each type of asbestos during mineral dissolution. Despite evidence of microbially mediated dissolution in all minerals, none of the microorganisms tested disrupted the structure of the asbestos mineral fibers. Further constraints on the relationships between elemental release rates, amount of starting asbestos, reaction volumes, and incubation times will be required to better compare asbestos dissolution treatments studied to date.

Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes

Vigliaturo, Ruggero;
2023-01-01

Abstract

: The Fe content and the morphometry of asbestos are two major factors linked to its toxicity. This study explored the use of microbe-mineral interactions between asbestos (and asbestos-like) minerals and thermophilic chemolithoautotrophic microorganisms as possible mineral dissolution treatments targeting their toxic properties. The removal of Fe from crocidolite was tested through chemolithoautotrophic Fe(III) reduction activities at 60°C. Chrysotile and tremolite-actinolite were tested for dissolution and potential release of elements like Si and Mg through biosilicification processes at 75°C. Our results show that chemolithoautotrophic Fe(III) reduction activities by Deferrisoma palaeochoriense were supported with crocidolite as the sole source of Fe(III) used as a terminal electron acceptor during respiration. Microbial Fe(III) reduction activities resulted in higher Fe release rates from crocidolite in comparison to previous studies on Fe leaching from crocidolite through Fe assimilation activities by soil fungi. Evidence of biosilicification in Thermovibrio ammonificans did not correspond with increased Si and Mg release from chrysotile or tremolite-actinolite dissolution. However, overall Si and Mg release from chrysotile into our experimental medium outmatched previously reported capabilities for Si and Mg release from chrysotile by fungi. Differences in the profiles of elements released from chrysotile and tremolite-actinolite during microbe-mineral experiments with T. ammonificans underscored the relevance of underlying crystallochemical differences in driving mineral dissolution and elemental bioavailability. Experimental studies targeting the interactions between chemolithoautotrophs and asbestos (or asbestos-like) minerals offer new access to the mechanisms behind crystallochemical mineral alterations and their role in the development of tailored asbestos treatments. IMPORTANCE We explored the potential of chemosynthetic microorganisms growing at high temperatures to induce the release of key elements (mainly iron, silicon, and magnesium) involved in the known toxic properties (iron content and fibrous mineral shapes) of asbestos minerals. We show for the first time that the microbial respiration of iron from amphibole asbestos releases some of the iron contained in the mineral while supporting microbial growth. Another microorganism imposed on the two main types of asbestos minerals (serpentines and amphiboles) resulted in distinct elemental release profiles for each type of asbestos during mineral dissolution. Despite evidence of microbially mediated dissolution in all minerals, none of the microorganisms tested disrupted the structure of the asbestos mineral fibers. Further constraints on the relationships between elemental release rates, amount of starting asbestos, reaction volumes, and incubation times will be required to better compare asbestos dissolution treatments studied to date.
2023
0204822
0204822
asbestos minerals; biosilicification; microbe-mineral interactions; microbial iron reduction; thermophiles
Choi, Jessica K; Vigliaturo, Ruggero; Gieré, Reto; Pérez-Rodríguez, Ileana
File in questo prodotto:
File Dimensione Formato  
Choi et al. 2023.pdf

Accesso aperto

Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1903854
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact