The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.
Experimental and computational study of the role of defects and secondary phases on the thermoelectric properties of TiNi1+xSn (0 ≤x≤ 0.12) half Heusler compounds
Ascrizzi, Eleonora;Casassa, Silvia;Daga, Loredana Edith;Dasmahapatra, Atreyi;Maschio, Lorenzo;Karttunen, Antti J;Fanciulli, Carlo;Aversano, Francesco;Baricco, Marcello;Castellero, Alberto
2023-01-01
Abstract
The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.File | Dimensione | Formato | |
---|---|---|---|
2023_nanotechnology_34_31_315703_TiNiSn.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Complete Document for Review_OA.pdf
Open Access dal 18/05/2024
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.