Eosinophilic airway inflammation is a hallmark in the pathophysiological and clinical definition of asthma. In the last decades, asthma evolved in the recognition of different phenotypes identified by natural history, clinical and physiological characteristics, and the underlying immune mechanisms. Among these phenotypes, many have been associated with eosinophilic-driven inflammation. This is the case of either early-onset allergic Th2 asthma or late-onset persistent eosinophilic asthma. Both animal models and analysis from human samples have contributed to elucidate the role of eosinophils in the asthmatic inflammatory response and the synergic role of Th2 cytokines. In severe asthma, high numbers of eosinophils can persist despite treatment with inhaled and oral corticosteroids leading to the definition of severe refractory eosinophilic asthma. The combined role of IL-4-, IL-13- and IL-5-associated pathways has focused the view over the T2-type endotypes, wherein a specific biological pathway explains the observable properties of different phenotypes and the identifiable biomarkers can predict response to monoclonal antibodies directed against a selected immune target. In the era of precision medicine and personalized therapy, both the identification of Th2 molecules and eosinophils as targets and biomarkers have become the best clue for treating and monitoring severe asthma.

Eosinophilic Phenotype: The Lesson from Research Models to Severe Asthma

Giuseppe, Guida;Andrea, Antonelli
2020-01-01

Abstract

Eosinophilic airway inflammation is a hallmark in the pathophysiological and clinical definition of asthma. In the last decades, asthma evolved in the recognition of different phenotypes identified by natural history, clinical and physiological characteristics, and the underlying immune mechanisms. Among these phenotypes, many have been associated with eosinophilic-driven inflammation. This is the case of either early-onset allergic Th2 asthma or late-onset persistent eosinophilic asthma. Both animal models and analysis from human samples have contributed to elucidate the role of eosinophils in the asthmatic inflammatory response and the synergic role of Th2 cytokines. In severe asthma, high numbers of eosinophils can persist despite treatment with inhaled and oral corticosteroids leading to the definition of severe refractory eosinophilic asthma. The combined role of IL-4-, IL-13- and IL-5-associated pathways has focused the view over the T2-type endotypes, wherein a specific biological pathway explains the observable properties of different phenotypes and the identifiable biomarkers can predict response to monoclonal antibodies directed against a selected immune target. In the era of precision medicine and personalized therapy, both the identification of Th2 molecules and eosinophils as targets and biomarkers have become the best clue for treating and monitoring severe asthma.
2020
Cells of the Immune System
Intechopen
8
1
22
978-1-78985-583-8
978-1-78985-584-5
https://www.intechopen.com/books/cells-of-the-immune-system/eosinophilic-phenotype-the-lesson-from-research-models-to-severe-asthma
Giuseppe, Guida; Andrea, Antonelli
File in questo prodotto:
File Dimensione Formato  
Guida G intechopen chapter 2020.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 370.29 kB
Formato Adobe PDF
370.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1907690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact