The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair β-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against β-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.
Strigolactones as Broad-Spectrum Antivirals against β-Coronaviruses through Targeting the Main Protease Mpro
Matteo BiolattiFirst
;Marco Blangetti;Greta Bajetto;Davide Arnodo;Matteo Bersani;Giulia D’Arrigo;Simone Ghinato;Marco De Andrea;Francesca Gugliesi;Camilla Albano;Selina Pasquero;Ivan Visentin;Cristina Prandi;Francesca SpyrakisCo-last
;Valentina Dell’Oste
2023-01-01
Abstract
The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair β-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against β-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.File | Dimensione | Formato | |
---|---|---|---|
acsinfecdis.3c00219.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.