Federated learning initiatives in healthcare are being developed to collaboratively train predictive models without the need to centralize sensitive personal data. GenoMed4All is one such project, with the goal of connecting European clinical and -omics data repositories on rare diseases through a federated learning platform. Currently, the consortium faces the challenge of a lack of well-established international datasets and interoperability standards for federated learning applications on rare diseases. This paper presents our practical approach to select and implement a Common Data Model (CDM) suitable for the federated training of predictive models applied to the medical domain, during the initial design phase of our federated learning platform. We describe our selection process, composed of identifying the consortium's needs, reviewing our functional and technical architecture specifications, and extracting a list of business requirements. We review the state of the art and evaluate three widely-used approaches (FHIR, OMOP and Phenopackets) based on a checklist of requirements and specifications. We discuss the pros and cons of each approach considering the use cases specific to our consortium as well as the generic issues of implementing a European federated learning healthcare platform. A list of lessons learned from the experience in our consortium is discussed, from the importance of establishing the proper communication channels for all stakeholders to technical aspects related to -omics data. For federated learning projects focused on secondary use of health data for predictive modeling, encompassing multiple data modalities, a phase of data model convergence is sorely needed to gather different data representations developed in the context of medical research, interoperability of clinical care software, imaging, and -omics analysis into a coherent, unified data model. Our work identifies this need and presents our experience and a list of actionable lessons learned for future work in this direction.

The need for multimodal health data modeling: A practical approach for a federated-learning healthcare platform

Sanavia, Tiziana;
2023-01-01

Abstract

Federated learning initiatives in healthcare are being developed to collaboratively train predictive models without the need to centralize sensitive personal data. GenoMed4All is one such project, with the goal of connecting European clinical and -omics data repositories on rare diseases through a federated learning platform. Currently, the consortium faces the challenge of a lack of well-established international datasets and interoperability standards for federated learning applications on rare diseases. This paper presents our practical approach to select and implement a Common Data Model (CDM) suitable for the federated training of predictive models applied to the medical domain, during the initial design phase of our federated learning platform. We describe our selection process, composed of identifying the consortium's needs, reviewing our functional and technical architecture specifications, and extracting a list of business requirements. We review the state of the art and evaluate three widely-used approaches (FHIR, OMOP and Phenopackets) based on a checklist of requirements and specifications. We discuss the pros and cons of each approach considering the use cases specific to our consortium as well as the generic issues of implementing a European federated learning healthcare platform. A list of lessons learned from the experience in our consortium is discussed, from the importance of establishing the proper communication channels for all stakeholders to technical aspects related to -omics data. For federated learning projects focused on secondary use of health data for predictive modeling, encompassing multiple data modalities, a phase of data model convergence is sorely needed to gather different data representations developed in the context of medical research, interoperability of clinical care software, imaging, and -omics analysis into a coherent, unified data model. Our work identifies this need and presents our experience and a list of actionable lessons learned for future work in this direction.
2023
Inglese
Esperti anonimi
141
104338-1
104338-12
12
https://www.sciencedirect.com/science/article/pii/S153204642300059X?via=ihub
Data model; Federated learning; Healthcare; Lessons learned; Medical research; Omics
FRANCIA
SPAGNA
GRECIA
   Genomics and Personalized Medicine for all though Artificial Intelligence in Haematological Diseases
   GenoMed4ALL
   EUROPEAN COMMISSION
   H2020
   101017549
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
8
Cremonesi, Francesco; Planat, Vincent; Kalokyri, Varvara; Kondylakis, Haridimos; Sanavia, Tiziana; Miguel Mateos Resinas, Victor; Singh, Babita; Uribe...espandi
info:eu-repo/semantics/article
reserved
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S153204642300059X-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1921470
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact