Detection of individual trees within extensive remotely sensed data is an essential phase to derive accurate knowledge of crop status, enabling Precision Agriculture (PA) approaches. In this work, a novel method for tree crown segmentation within a 3D point cloud is presented, which allows the location of each individual chestnut to be automatically detected, and to assign point of the model to the proper tree canopy. The algorithm is based on a multi-filtering approach and the watershed transform clustering. A chestnut orchard in Dronero (Piedmont, Italy) was chosen as a case study. The results of this work enable the full exploitation of 3D point cloud model of the crop, allowing further specific processing at individual tree level for extraction of crown information.

109. Novel chestnut tree crowns segmentation method by UAV oblique photogrammetry

Dicembrini, E.;Biglia, A.;Grella, M.;Maritano, V.;Ricauda Aimonino, D.;Gay, P.;Comba, L.
2023-01-01

Abstract

Detection of individual trees within extensive remotely sensed data is an essential phase to derive accurate knowledge of crop status, enabling Precision Agriculture (PA) approaches. In this work, a novel method for tree crown segmentation within a 3D point cloud is presented, which allows the location of each individual chestnut to be automatically detected, and to assign point of the model to the proper tree canopy. The algorithm is based on a multi-filtering approach and the watershed transform clustering. A chestnut orchard in Dronero (Piedmont, Italy) was chosen as a case study. The results of this work enable the full exploitation of 3D point cloud model of the crop, allowing further specific processing at individual tree level for extraction of crown information.
2023
Inglese
contributo
1 - Conferenza
14th European Conference on Precision Agriculture
Bologna, Italy
2-6 July 2023
John V. Stafford
Precision agriculture ’23
Esperti anonimi
Wageningen Academic Publishers
Wageningen
PAESI BASSI
871
877
7
978-90-8686-393-8
978-90-8686-947-3
https://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-947-3_109
Remote sensing, Uncrewed Aerial Vehicles (UAV), Photogrammetry, Semantic interpretation, Watershed transform
no
   Digital Agriculture Technology to Achieve data to Build User-friendly Sustainability indicators - 2020SCNF4L
   DATA-BUS
   MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITA' E DELLA RICERCA
   D.D n. 131 del 07/02/2022
3 – prodotto con deroga per i casi previsti dal Regolamento (allegherò il modulo al passo 5-Carica)
7
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Dicembrini, E.; Biglia, A.; Grella, M.; Maritano, V.; Ricauda Aimonino, D.; Gay, P.; Comba, L.
273
reserved
File in questo prodotto:
File Dimensione Formato  
Manuscript_40823_FINAL.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1929431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact