The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observational goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth's limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

Science and mission status of EUSO-SPB2

Anzalone A.;Arnone E.;Bagheri M.;Barghini D.;Bartocci S.;Bertaina M.;Bisconti F.;Blanc N.;Bozzo E.;Casolino M.;Cassardo C.;Cellino A.;Cotto G.;Cremonini R.;Ferrarese S.;Franchini S.;Galeotti P.;Gardiol D.;Golzio A.;Kajino F.;Manfrin M.;Miyamoto H.;Neronov A.;Pagliaro A.;Perfetto F.;Piraino S.;Plebaniak Z.;Pollini A.;Scagliola A.;Shinozaki K.;Suzuki M.;Vigorito C.;
2022-01-01

Abstract

The Extreme Universe Space Observatory on a Super Pressure Balloon II (EUSO-SPB2) is a second generation stratospheric balloon instrument for the detection of Ultra High Energy Cosmic Rays (UHECRs, E > 1 EeV) via the fluorescence technique and of Very High Energy (VHE, E > 10 PeV) neutrinos via Cherenkov emission. EUSO-SPB2 is a pathfinder mission for instruments like the proposed Probe Of Extreme Multi-Messenger Astrophysics (POEMMA). The purpose of such a space-based observatory is to measure UHECRs and UHE neutrinos with high statistics and uniform exposure. EUSO-SPB2 is designed with two Schmidt telescopes, each optimized for their respective observational goals. The Fluorescence Telescope looks at the nadir to measure the fluorescence emission from UHECR-induced extensive air shower (EAS), while the Cherenkov Telescope is optimized for fast signals (∼10 ns) and points near the Earth's limb. This allows for the measurement of Cherenkov light from EAS caused by Earth skimming VHE neutrinos if pointed slightly below the limb or from UHECRs if observing slightly above. The expected launch date of EUSO-SPB2 is Spring 2023 from Wanaka, NZ with target duration of up to 100 days. Such a flight would provide thousands of VHECR Cherenkov signals in addition to tens of UHECR fluorescence tracks. Neither of these kinds of events have been observed from either orbital or suborbital altitudes before, making EUSO-SPB2 crucial to move forward towards a space-based instrument. It will also enhance the understanding of potential background signals for both detection techniques. This contribution will provide a short overview of the detector and the current status of the mission as well as its scientific goals. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
2022
37 th International Cosmic Ray Conference (ICRC 2021)
Berlin
July 12th – 23rd, 2021
395
1
11
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144607297&partnerID=40&md5=d6f4827030f1c1dda45f14244f32163d
Cosmic rays; Cosmology; Fluorescence; Orbits; Particle detectors; Telescopes; Cherenkov emissions; Cosmic rays (UHECRs); Extensive air showers; Fluorescence technique; Pathfinder mission; Second generation; Space observatories; Stratospheric balloon; Ultra high-energy cosmic rays; Very high energies; Observatories
Abdellaoui G.; Abe S.; Adams J.H.; Allard D.; Alonso G.; Anchordoqui L.; Anzalone A.; Arnone E.; Asano K.; Attallah R.; Attoui H.; Ave Pernas M.; Bagh...espandi
File in questo prodotto:
File Dimensione Formato  
2022-Abdellaoui_et_al-EUSO.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1929830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact