The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program [1] is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth's atmosphere and forward-beamed Cherenkov radiation reflected from the Earth's surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEM-EUSO will do several secondary studies due to the instruments' unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 μs: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA [2]), from stratospheric balloons (EUSO-Balloon [3], EUSO-SPB1 [4], EUSO-SPB2 [5]), and from space (TUS [6], Mini-EUSO [7]) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO [8] and POEMMA [9]. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

An overview of the JEM-EUSO program and results

Anzalone A.;Arnone E.;Barghini D.;Bertaina M.;Bisconti F.;Casolino M.;Cassardo C.;Cellino A.;Cotto G.;Cremonini R.;Ferrarese S.;Galeotti P.;Gardiol D.;Golzio A.;Kajino F.;Manfrin M.;Miyamoto H.;Neronov A.;Plebaniak Z.;Shinozaki K.;Vigorito C.;
2022-01-01

Abstract

The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program [1] is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth's atmosphere and forward-beamed Cherenkov radiation reflected from the Earth's surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEM-EUSO will do several secondary studies due to the instruments' unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 μs: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA [2]), from stratospheric balloons (EUSO-Balloon [3], EUSO-SPB1 [4], EUSO-SPB2 [5]), and from space (TUS [6], Mini-EUSO [7]) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO [8] and POEMMA [9]. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
2022
Inglese
contributo
1 - Conferenza
37 th International Cosmic Ray Conference (ICRC 2021)
Berlin
July 12th – 23rd, 2021
Internazionale
Comitato scientifico
395
1
12
12
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144592603&partnerID=40&md5=4e1308a2fa84fab8635307f7be689cc1
Acceleration; Balloons; Cosmic rays; Cosmology; Fluorescence; 'current; Astroparticle physics; Celestial sphere; Fundamental physics; JEM-EUSO; Particle acceleration; Space-based detector; Ultra high-energy cosmic rays; Uniform coverage; UV-light; Earth atmosphere
FRANCIA
GERMANIA
SPAGNA
STATI UNITI D'AMERICA
GIAPPONE
IRLANDA
SVEZIA
   Il progetto JEM-EUSO e i suoi path-finders TA-EUSO e EUSO-Balloon per lo studio dei raggi cosmici alle energie estreme e l’osservazione terrestre dalla Stazione Spaziale Internazionale”
   MINISTERO DEGLI AFFARI ESTERI
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
04-CONTRIBUTO IN ATTI DI CONVEGNO::04B-Conference paper in rivista
info:eu-repo/semantics/conferenceObject
296
open
Abdellaoui G.; Abe S.; Adams J.H.; Allard D.; Alonso G.; Anchordoqui L.; Anzalone A.; Arnone E.; Asano K.; Attallah R.; Attoui H.; Ave Pernas M.; Bagh...espandi
273
File in questo prodotto:
File Dimensione Formato  
2002-Abdellaoui_et_al-EUSO2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1929850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact