We show that optimal stopping surfaces (t, y) \mapsto \rightarrow x\ast(t, y) arising from time-inhomogeneous optimal stopping problems on two-dimensional jump-diffusions (X, Y ) are continuous (jointly in time and space) under mild monotonicity and regularity assumptions of local nature.

ON THE CONTINUITY OF OPTIMAL STOPPING SURFACES FOR JUMP-DIFFUSIONS

De Angelis, T;
2023-01-01

Abstract

We show that optimal stopping surfaces (t, y) \mapsto \rightarrow x\ast(t, y) arising from time-inhomogeneous optimal stopping problems on two-dimensional jump-diffusions (X, Y ) are continuous (jointly in time and space) under mild monotonicity and regularity assumptions of local nature.
2023
61
3
1513
1531
optimal stopping; free boundary problems; continuous optimal boundaries; jump-diffusions
Cai, C; De Angelis, T; Palczewski, J
File in questo prodotto:
File Dimensione Formato  
Cai-DeAngelis-Palczewski_2022_10_04.pdf

Accesso riservato

Dimensione 395.62 kB
Formato Adobe PDF
395.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Cai-De Angelis-Palczewski(2023)SICON.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 445.84 kB
Formato Adobe PDF
445.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1930051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact