We show that optimal stopping surfaces (t, y) \mapsto \rightarrow x\ast(t, y) arising from time-inhomogeneous optimal stopping problems on two-dimensional jump-diffusions (X, Y ) are continuous (jointly in time and space) under mild monotonicity and regularity assumptions of local nature.
ON THE CONTINUITY OF OPTIMAL STOPPING SURFACES FOR JUMP-DIFFUSIONS
De Angelis, T;
2023-01-01
Abstract
We show that optimal stopping surfaces (t, y) \mapsto \rightarrow x\ast(t, y) arising from time-inhomogeneous optimal stopping problems on two-dimensional jump-diffusions (X, Y ) are continuous (jointly in time and space) under mild monotonicity and regularity assumptions of local nature.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cai-DeAngelis-Palczewski_2022_10_04.pdf
Accesso riservato
Dimensione
395.62 kB
Formato
Adobe PDF
|
395.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cai-De Angelis-Palczewski(2023)SICON.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
445.84 kB
Formato
Adobe PDF
|
445.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.