In this paper we show the uniqueness of the critical point for semi-stable solutions of the problem{-Delta u = f(u) in Omegau > 0 in Omegau = 0 on partial derivative Omega,where Omega subset of R-2 is a smooth bounded domain whose boundary has nonnegative curvature and f(0) >= 0. It extends a result by Cabre-Chanillo to the case where the curvature of partial derivative Omega vanishes.
Uniqueness of the critical point for semi-stable solutions in R-2
De Regibus, F;
2021-01-01
Abstract
In this paper we show the uniqueness of the critical point for semi-stable solutions of the problem{-Delta u = f(u) in Omegau > 0 in Omegau = 0 on partial derivative Omega,where Omega subset of R-2 is a smooth bounded domain whose boundary has nonnegative curvature and f(0) >= 0. It extends a result by Cabre-Chanillo to the case where the curvature of partial derivative Omega vanishes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DeRegibusGrossiMukherjee-2021-UniquenessOfTheCriticalPointForSemistableSolutionsInR2.pdf
Accesso riservato
Dimensione
323.5 kB
Formato
Adobe PDF
|
323.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.