Federated Learning (FL) is a widespread Machine Learning paradigm handling distributed Big Data. In this work, we demonstrate that different FL frameworks expose different scaling performances despite adopting the same technologies, highlighting the need for a more comprehensive study on the topic.

Benchmarking Federated Learning Scalability

Samuele Fonio
In corso di stampa

Abstract

Federated Learning (FL) is a widespread Machine Learning paradigm handling distributed Big Data. In this work, we demonstrate that different FL frameworks expose different scaling performances despite adopting the same technologies, highlighting the need for a more comprehensive study on the topic.
In corso di stampa
The 2nd Italian Conference on Big Data and Data Science
Napoli
11-13 settembre 2023
Proceedings of the 2nd Italian Conference on Big Data and Data Science (ITADATA 2023)
CEUR
0
0
Federated Learning, Frameworks, Benchmark, Scalability
Gianluca Mittone Samuele Fonio
File in questo prodotto:
File Dimensione Formato  
23_ITADATA_preprint.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 106.42 kB
Formato Adobe PDF
106.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1933852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact