Synchronization of e-wearables can be challenging due to device performance variations. Here, the authors develop a general neural network-based solution that analyses and correct disparities between multiple virtual clocks and demonstrate it for a Bluetooth synchronized motion capture system at high frequency.Bluetooth-enabled wearables can be linked to form synchronized networks to provide insightful and representative data that is exceptionally beneficial in healthcare applications. However, synchronization can be affected by inevitable variations in the component's performance from their ideal behavior. Here, we report an application-level solution that embeds a Neural network to analyze and overcome these variations. The neural network examines the timing at each wearable node, recognizes time shifts, and fine-tunes a virtual clock to make them operate in unison and thus achieve synchronization. We demonstrate the integration of multiple Kinematics Detectors to provide synchronized motion capture at a high frequency (200 Hz) that could be used for performing spatial and temporal interpolation in movement assessments. The technique presented in this work is general and independent from the physical layer used, and it can be potentially applied to any wireless communication protocol.

Neural network-based Bluetooth synchronization of multiple wearable devices

Andrea Cavallo;
2023-01-01

Abstract

Synchronization of e-wearables can be challenging due to device performance variations. Here, the authors develop a general neural network-based solution that analyses and correct disparities between multiple virtual clocks and demonstrate it for a Bluetooth synchronized motion capture system at high frequency.Bluetooth-enabled wearables can be linked to form synchronized networks to provide insightful and representative data that is exceptionally beneficial in healthcare applications. However, synchronization can be affected by inevitable variations in the component's performance from their ideal behavior. Here, we report an application-level solution that embeds a Neural network to analyze and overcome these variations. The neural network examines the timing at each wearable node, recognizes time shifts, and fine-tunes a virtual clock to make them operate in unison and thus achieve synchronization. We demonstrate the integration of multiple Kinematics Detectors to provide synchronized motion capture at a high frequency (200 Hz) that could be used for performing spatial and temporal interpolation in movement assessments. The technique presented in this work is general and independent from the physical layer used, and it can be potentially applied to any wireless communication protocol.
2023
14
4472
1
10
Karthikeyan Kalyanasundaram Balasubramanian; Andrea Merello; Giorgio Zini; Nathan Charles Foster; Andrea Cavallo; Cristina Becchio; Marco Crepaldi...espandi
File in questo prodotto:
File Dimensione Formato  
s41467-023-40114-2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1934590
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact