In this paper, we explore the usage of hierarchical priors to improve learning in contexts where the number of available examples is extremely low. Specifically, we consider a Prototype Learning setting where deep neural networks are used to embed data in hyperspherical geometries. In this scenario, we propose an innovative way to learn the prototypes by combining class separation and hierarchical information. In addition, we introduce a contrastive loss function capable of balancing the exploitation of prototypes through a prototype pruning mechanism. We compare the proposed method with state-of-the-art approaches on two public datasets.
Hierarchical Priors for Hyperspherical Prototypical Networks
Samuele Fonio;Lorenzo Paletto;Mattia Cerrato;Dino Ienco;Roberto Esposito
2023-01-01
Abstract
In this paper, we explore the usage of hierarchical priors to improve learning in contexts where the number of available examples is extremely low. Specifically, we consider a Prototype Learning setting where deep neural networks are used to embed data in hyperspherical geometries. In this scenario, we propose an innovative way to learn the prototypes by combining class separation and hierarchical information. In addition, we introduce a contrastive loss function capable of balancing the exploitation of prototypes through a prototype pruning mechanism. We compare the proposed method with state-of-the-art approaches on two public datasets.File | Dimensione | Formato | |
---|---|---|---|
ES2023-65.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.