In epidemiology science, the importance to explore innovative modeling tools for acutely analyzing epidemic diffusion is turning into a big challenge considering the myriad of real-world aspects to capture. Typically, equation-based models, such as SIS and SIR, are used to study the propagation of diseases over a population. Improved approaches also include human-mobility patterns as network information to describe contacts among individuals. However, there still is the need to incorporate in these models information about different types of contagion, geographical information, humans habits, and environmental properties. In this paper, we propose a novel approach that takes into account: 1. direct and indirect epidemic contagion pathways to explore the dynamics of the epidemic, 2. the times of possible contagions, and 3. human-mobility patterns. We combine these three features exploiting time-varying hypergraphs, and we embed this model into a design-methodology for agent-based models (ABMs), able to improve the correctness in the epidemic estimations of classical contact-network approaches. We further describe a diffusion algorithm suitable for our design-methodology and adaptable to the peculiarities of any disease spreading policies and/or models. Finally, we tested our methodology by developing an ABM, realizing the SIS epidemic compartmental model, for simulating an epidemic propagation over a population of individuals. We experimented the model using real user-mobility data from the location-based social network Foursquare, and we demonstrated the high-impact of temporal direct and indirect contagion pathways.

A design-methodology for epidemic dynamics via time-varying hypergraphs

Antelmi A.
First
;
2020-01-01

Abstract

In epidemiology science, the importance to explore innovative modeling tools for acutely analyzing epidemic diffusion is turning into a big challenge considering the myriad of real-world aspects to capture. Typically, equation-based models, such as SIS and SIR, are used to study the propagation of diseases over a population. Improved approaches also include human-mobility patterns as network information to describe contacts among individuals. However, there still is the need to incorporate in these models information about different types of contagion, geographical information, humans habits, and environmental properties. In this paper, we propose a novel approach that takes into account: 1. direct and indirect epidemic contagion pathways to explore the dynamics of the epidemic, 2. the times of possible contagions, and 3. human-mobility patterns. We combine these three features exploiting time-varying hypergraphs, and we embed this model into a design-methodology for agent-based models (ABMs), able to improve the correctness in the epidemic estimations of classical contact-network approaches. We further describe a diffusion algorithm suitable for our design-methodology and adaptable to the peculiarities of any disease spreading policies and/or models. Finally, we tested our methodology by developing an ABM, realizing the SIS epidemic compartmental model, for simulating an epidemic propagation over a population of individuals. We experimented the model using real user-mobility data from the location-based social network Foursquare, and we demonstrated the high-impact of temporal direct and indirect contagion pathways.
2020
19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
Nuova Zelanda
2020
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
2020-
61
69
https://dl.acm.org/doi/10.5555/3398761.3398774
Agent-based Model; Direct and indirect infection; Epidemiology; Location-based Social Network; Time-Varying Hypergraph
Antelmi A.; Cordasco G.; Spagnuolo C.; Scarano V.
File in questo prodotto:
File Dimensione Formato  
p61.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1940971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact