We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries.

SINGULAR RIEMANNIAN FOLIATIONS AND THEIR QUADRATIC BASIC POLYNOMIALS

Radeschi M.
2020-01-01

Abstract

We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyl's First Fundamental Theorems, provides a characterization of the recently discovered Clifford foliations in terms of basic polynomials. This link also yields new structural results about infinitesimal foliations, such as the existence of non-trivial symmetries.
2020
25
1
251
277
Mendes R.A.E.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
MENDES-RADESCHI2020_Article_SINGULARRIEMANNIANFOLIATIONSAN.pdf

Accesso aperto

Dimensione 353.39 kB
Formato Adobe PDF
353.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact