We prove a slice theorem around closed leaves in a singular Riemannian foliation, and we use it to study the C∞-algebra of smooth basic functions, generalizing to the inhomogeneous setting a number of results by G. Schwarz. In particular, in the infinitesimal case we show that this algebra is generated by a finite number of polynomials.

A slice theorem for singular riemannian foliations, with applications

Radeschi M.
2019-01-01

Abstract

We prove a slice theorem around closed leaves in a singular Riemannian foliation, and we use it to study the C∞-algebra of smooth basic functions, generalizing to the inhomogeneous setting a number of results by G. Schwarz. In particular, in the infinitesimal case we show that this algebra is generated by a finite number of polynomials.
2019
371
7
4931
4949
Mendes R.A.E.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
S0002-9947-2018-07502-X.pdf

Accesso aperto

Dimensione 306.21 kB
Formato Adobe PDF
306.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact