Complex models of computer systems are often difficult to study with numerical or analytical approaches because of the state space explosion problem. The class of product-form models is one of the most significant tools for overcoming this problem, and in many applications, this tool is the only way to perform a quantitative analysis. In this paper, we study the duality between two different product-form models. The first consists of a queuing network with finite capacity waiting rooms governed by the skip-over policy. The second is a recently presented product-form model in which a job fetching policy is applied. To investigate the relationships between these two models, we first extend the fetching queuing model to allow for finite capacity warehouses and for a Repetitive Service Blocking with Random Destination (RS-RD) discipline. Subsequently, we represent their distinctive features in terms of Generalized Stochastic Petri Nets which precisely specify their semantics in a modular manner and provide clear and intuitive interpretations of these policies. With these two preliminary results, we prove that it is possible to structurally transform a model of one class into one of the other and vice versa, thus choosing the representation that is computationally more convenient to compute the performance measures of interest.
Skipping and Fetching: Insights on Non-conventional Product-Form Solutions
Balbo GianfrancoCo-first
;Sereno MatteoCo-first
2023-01-01
Abstract
Complex models of computer systems are often difficult to study with numerical or analytical approaches because of the state space explosion problem. The class of product-form models is one of the most significant tools for overcoming this problem, and in many applications, this tool is the only way to perform a quantitative analysis. In this paper, we study the duality between two different product-form models. The first consists of a queuing network with finite capacity waiting rooms governed by the skip-over policy. The second is a recently presented product-form model in which a job fetching policy is applied. To investigate the relationships between these two models, we first extend the fetching queuing model to allow for finite capacity warehouses and for a Repetitive Service Blocking with Random Destination (RS-RD) discipline. Subsequently, we represent their distinctive features in terms of Generalized Stochastic Petri Nets which precisely specify their semantics in a modular manner and provide clear and intuitive interpretations of these policies. With these two preliminary results, we prove that it is possible to structurally transform a model of one class into one of the other and vice versa, thus choosing the representation that is computationally more convenient to compute the performance measures of interest.File | Dimensione | Formato | |
---|---|---|---|
Skipping_and_Fetching__Insights_on_non_convectional_Product_Form_Solutions__QEST_2023_.pdf
Accesso riservato
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
706.74 kB
Formato
Adobe PDF
|
706.74 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.