In this work we introduce a defeasible Description Logic for abductive reasoning. Our proposal exploits a fragment of a probabilistic extension of a Description Logic of typicality, whose semantics corresponds to a natural extension of the well established mechanism of rational closure extended to Description Logics. The presence of typicality assertions that can be non-monotonically inferred from a knowledge base, corresponding to those belonging to its rational closure, avoids the need of an explicit selection of abducibles.

A Defeasible Description Logic for Abduction

Pozzato G. L.
;
2023-01-01

Abstract

In this work we introduce a defeasible Description Logic for abductive reasoning. Our proposal exploits a fragment of a probabilistic extension of a Description Logic of typicality, whose semantics corresponds to a natural extension of the well established mechanism of rational closure extended to Description Logics. The presence of typicality assertions that can be non-monotonically inferred from a knowledge base, corresponding to those belonging to its rational closure, avoids the need of an explicit selection of abducibles.
2023
Inglese
contributo
1 - Conferenza
22nd International Conference of the Italian Association for Artificial Intelligence, AIxIA 2023
Roma, Italia
6/11 - 9/11 - 2023
Internazionale
Roberto Basili, Domenico Lembo, Carla Limongelli, Andrea Orlandini:
Roberto Basili, Domenico Lembo, Carla Limongelli, Andrea Orlandini:
AIxIA 2023 - Advances in Artificial Intelligence - XXIInd International Conference of the Italian Association for Artificial Intelligence, AIxIA 2023, Rome, Italy, November 6-9, 2023, Proceedings
Esperti anonimi
Springer Science and Business Media Deutschland GmbH
Berlin
GERMANIA
14318
74
87
14
978-3-031-47545-0
978-3-031-47546-7
no
5 – prodotto non soggetto al Regolamento (monografia o edizione critica NON finanziata con fondi pubblici, ex Art. 4.1)
2
info:eu-repo/semantics/conferenceObject
04-CONTRIBUTO IN ATTI DI CONVEGNO::04A-Conference paper in volume
Pozzato G.L.; Spinnicchia M.
273
reserved
File in questo prodotto:
File Dimensione Formato  
paper32_AIIA_2023_POZSPI_camera_ready.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 406.85 kB
Formato Adobe PDF
406.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact