Purpose: Different methods are available to identify haematopoietically active bone marrow (ActBM). However, their use can be challenging for radiotherapy routine treatments, since they require specific equipment and dedicated time. A machine learning (ML) approach, based on radiomic features as inputs to three different classifiers, was applied to computed tomography (CT) images to identify haematopoietically active bone marrow in anal cancer patients. Methods: A total of 40 patients was assigned to the construction set (training set + test set). Fluorine-18Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) images were used to detect the active part of the pelvic bone marrow (ActPBM) and stored as ground-truth for three subregions: iliac, lower pelvis and lumbosacral bone marrow (ActIBM, ActLPBM, ActLSBM). Three parameters were used for the correspondence analyses between 18FDG-PET and ML classifiers: DICE index, Precision and Recall. Results: For the 40-patient cohort, median values [min; max] of the Dice index were 0.69 [0.20; 0.84], 0.76 [0.25; 0.89], and 0.36 [0.15; 0.67] for ActIBM, ActLSBM, and ActLPBM, respectively. The Precision/Recall (P/R) ratio median value for the ActLPBM structure was 0.59 [0.20; 1.84] (over segmentation), while for the other two subregions the P/R ratio median has values of 1.249 [0.43; 4.15] for ActIBM and 1.093 [0.24; 1.91] for ActLSBM (under segmentation). Conclusion: A satisfactory degree of overlap compared to 18FDG-PET was found for 2 out of the 3 subregions within pelvic bones. Further optimization and generalization of the process is required before clinical implementation.
Active bone marrow segmentation based on computed tomography imaging in anal cancer patients: A machine-learning-based proof of concept
Fiandra, C;Arcadipane, F;Franco, P;Silvetti, P;Zara, S;Ricardi, U;
2023-01-01
Abstract
Purpose: Different methods are available to identify haematopoietically active bone marrow (ActBM). However, their use can be challenging for radiotherapy routine treatments, since they require specific equipment and dedicated time. A machine learning (ML) approach, based on radiomic features as inputs to three different classifiers, was applied to computed tomography (CT) images to identify haematopoietically active bone marrow in anal cancer patients. Methods: A total of 40 patients was assigned to the construction set (training set + test set). Fluorine-18Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) images were used to detect the active part of the pelvic bone marrow (ActPBM) and stored as ground-truth for three subregions: iliac, lower pelvis and lumbosacral bone marrow (ActIBM, ActLPBM, ActLSBM). Three parameters were used for the correspondence analyses between 18FDG-PET and ML classifiers: DICE index, Precision and Recall. Results: For the 40-patient cohort, median values [min; max] of the Dice index were 0.69 [0.20; 0.84], 0.76 [0.25; 0.89], and 0.36 [0.15; 0.67] for ActIBM, ActLSBM, and ActLPBM, respectively. The Precision/Recall (P/R) ratio median value for the ActLPBM structure was 0.59 [0.20; 1.84] (over segmentation), while for the other two subregions the P/R ratio median has values of 1.249 [0.43; 4.15] for ActIBM and 1.093 [0.24; 1.91] for ActLSBM (under segmentation). Conclusion: A satisfactory degree of overlap compared to 18FDG-PET was found for 2 out of the 3 subregions within pelvic bones. Further optimization and generalization of the process is required before clinical implementation.File | Dimensione | Formato | |
---|---|---|---|
Active bone marrow segmentation based on computed tomography imaging.pdf
Accesso riservato
Descrizione: Active bone marrow segmentation based on computed tomography imaging
Tipo di file:
PDF EDITORIALE
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.