By ionic exchange of preformed methylimogolite nanotubes (chemical formula (OH)3Al2O3SiCH3), nanotubes with the chemical formula (OH)3Al2-xFexO3SiCH3 were obtained, with x values of 0.05 and 0.1, corresponding to a nominal Fe content of 1.4 and 2.8 wt%, respectively. The nanotubes were characterized using low angles X-ray powder diffraction; N2 sorption at −196 °C; Diffuse Reflectance UV–Vis spectroscopy and High-Resolution Transmission Electron Microscopy coupled to Energy Dispersive X-Ray Analysis. Their electrochemical behaviour was investigated by Cyclic Voltammetry: a redox behaviour was observed only with a Fe content of 2.8 wt%, likely due to Fe-oxyhydroxide clusters (FeOOH) at the nanotubes' outer surface. Based on the electrochemical and physicochemical characterizations, nanocomposites of Fe-doped methylimogolite and reduced Graphene Oxide (rGO) were obtained for the first time through a simple method, previously developed by some of us to disperse electrochemically active nanomaterials onto carbon supports. In the micro/mesoporous nanocomposites (specific surface area in the 370–284 m2 g−1 range) the NTs were highly dispersed within the 3D rGO matrix. Cyclic Voltammetry showed that the capacitive behaviour of the Fe-doped NTs alone were enhanced when they were embedded in the 3D rGO matrix.

“Physicochemical properties and redox behaviour of Fe-doped hybrid nanotubes of the imogolite type and their rGO nanocomposites”

Manzoli M.;
2024-01-01

Abstract

By ionic exchange of preformed methylimogolite nanotubes (chemical formula (OH)3Al2O3SiCH3), nanotubes with the chemical formula (OH)3Al2-xFexO3SiCH3 were obtained, with x values of 0.05 and 0.1, corresponding to a nominal Fe content of 1.4 and 2.8 wt%, respectively. The nanotubes were characterized using low angles X-ray powder diffraction; N2 sorption at −196 °C; Diffuse Reflectance UV–Vis spectroscopy and High-Resolution Transmission Electron Microscopy coupled to Energy Dispersive X-Ray Analysis. Their electrochemical behaviour was investigated by Cyclic Voltammetry: a redox behaviour was observed only with a Fe content of 2.8 wt%, likely due to Fe-oxyhydroxide clusters (FeOOH) at the nanotubes' outer surface. Based on the electrochemical and physicochemical characterizations, nanocomposites of Fe-doped methylimogolite and reduced Graphene Oxide (rGO) were obtained for the first time through a simple method, previously developed by some of us to disperse electrochemically active nanomaterials onto carbon supports. In the micro/mesoporous nanocomposites (specific surface area in the 370–284 m2 g−1 range) the NTs were highly dispersed within the 3D rGO matrix. Cyclic Voltammetry showed that the capacitive behaviour of the Fe-doped NTs alone were enhanced when they were embedded in the 3D rGO matrix.
2024
247
107202
107202
Capacitive behaviour; Fe-doping; FeOOH clusters; Methylimogolite nanotubes; Redox properties; rGO nanocomposites
Serrapede M.; Rivolo P.; Manzoli M.; Armandi M.; Fontana M.; Arcoraci D.; Pirri C.F.; Esposito S.; Bonelli B.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0169131723003897-main.pdf

Accesso aperto con embargo fino al 01/12/2025

Tipo di file: PDF EDITORIALE
Dimensione 9.28 MB
Formato Adobe PDF
9.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1947241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact