The wide range of applications of hemp products, together with the environmental benefits that come from hemp cultivation are driving up the market demand for Cannabis sativa L. plant. One of the main restrictions for hemp cultivation and marketing concerns the content of delta-9-tetrahydrocannabidiol (Δ9-THC), which is known to have psychotomimetic effect. If the recent growing of hemp market is beneficial by an economic and environmental point of view, it is necessary to develop reliable analytical methods for the chemical characterization of hemp products, to guarantee the safety of use for the customers. This study aimed to develop a simple ultrasound-assisted dispersive solid-liquid microextraction (UA-DSLME) method for the extraction of cannabinoids in hemp products, using eutectic solvents (ESs) as extraction material. Two types of ESs were compared: one prepared with a [Ch+][Br-]-modified salts as hydrogen bond acceptor and one based on natural terpenoids. The ultrasound-assisted dispersive solid-liquid microextraction method was optimized to be applied for the analysis of aerial parts of hemp collected before flowering, hemp inflorescences and a commercial sample called CBD oil, and proved to be robust and versatile. Under optimal conditions, only 100 µL of ES and 2 mL of water as co-solvent were used in the US-assisted extraction, before the analysis in the UHPLC-PDA system. The developed approach allowed to obtain the same chemical profile of conventional methods, while improving the greenness of the method and the enrichment of the marker analytes. To overcome the strong matrix effect for cannabinoids, a matrix-matched calibration was used. Blank matrices of the samples under study were easily obtained by performing an exhaustive extraction of the marker analytes in the hemp samples. These matrices were successfully used for validation, achieving accuracy values between 82% and 118%.

Ultrasound-assisted dispersive solid-liquid microextraction with eutectic solvents for the determination of cannabinoids in different hemp products

Mastellone, Giulia
First
;
Marengo, Arianna;Sgorbini, Barbara;Rubiolo, Patrizia;Cagliero, Cecilia
Last
2023-01-01

Abstract

The wide range of applications of hemp products, together with the environmental benefits that come from hemp cultivation are driving up the market demand for Cannabis sativa L. plant. One of the main restrictions for hemp cultivation and marketing concerns the content of delta-9-tetrahydrocannabidiol (Δ9-THC), which is known to have psychotomimetic effect. If the recent growing of hemp market is beneficial by an economic and environmental point of view, it is necessary to develop reliable analytical methods for the chemical characterization of hemp products, to guarantee the safety of use for the customers. This study aimed to develop a simple ultrasound-assisted dispersive solid-liquid microextraction (UA-DSLME) method for the extraction of cannabinoids in hemp products, using eutectic solvents (ESs) as extraction material. Two types of ESs were compared: one prepared with a [Ch+][Br-]-modified salts as hydrogen bond acceptor and one based on natural terpenoids. The ultrasound-assisted dispersive solid-liquid microextraction method was optimized to be applied for the analysis of aerial parts of hemp collected before flowering, hemp inflorescences and a commercial sample called CBD oil, and proved to be robust and versatile. Under optimal conditions, only 100 µL of ES and 2 mL of water as co-solvent were used in the US-assisted extraction, before the analysis in the UHPLC-PDA system. The developed approach allowed to obtain the same chemical profile of conventional methods, while improving the greenness of the method and the enrichment of the marker analytes. To overcome the strong matrix effect for cannabinoids, a matrix-matched calibration was used. Blank matrices of the samples under study were easily obtained by performing an exhaustive extraction of the marker analytes in the hemp samples. These matrices were successfully used for validation, achieving accuracy values between 82% and 118%.
2023
123967
123978
Eutectic solvents, Microextraction, Cannabinoids, Hemp, Natural products, Liquid chromatography
Mastellone, Giulia; Marengo, Arianna; Sgorbini, Barbara; Rubiolo, Patrizia; Anderson, Jared L.; Cagliero, Cecilia
File in questo prodotto:
File Dimensione Formato  
validazioneCanapa_def.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.32 MB
Formato Adobe PDF
3.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1948082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact