We show that, in toric Kaehler geometry, the sign of the Ricci curvature corresponds exactly to convexity properties of the volume functional. We also discuss analogous relationships in the more general context of quasi-homogeneous manifolds, and existence results for minimal Lagrangian submanifolds.

Ricci curvature, the convexity of volume and minimal Lagrangian submanifolds

Tommaso Pacini
2023-01-01

Abstract

We show that, in toric Kaehler geometry, the sign of the Ricci curvature corresponds exactly to convexity properties of the volume functional. We also discuss analogous relationships in the more general context of quasi-homogeneous manifolds, and existence results for minimal Lagrangian submanifolds.
2023
21
6
1239
1254
Tommaso Pacini
File in questo prodotto:
File Dimensione Formato  
PSHconvexity_IV.pdf

Accesso aperto

Dimensione 379.79 kB
Formato Adobe PDF
379.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1948193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact