Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; 1.3 <= M-* <= 3.2 M-circle dot) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT-34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT-35b, part of a possible planetary system around a metal-poor star, and CoRoT-36b on a misaligned orbit. We find that 0.12 +/- 0.10 per cent of IMSs between 1.3 <= M-* <= 1.6 M-circle dot observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency (0.70 +/- 0.16 per cent) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets (similar to 8 per cent).

Sub-stellar companions of intermediate-mass stars with CoRoT: CoRoT-34b, CoRoT-35b, and CoRoT-36b

D Gandolfi;
2022-01-01

Abstract

Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; 1.3 <= M-* <= 3.2 M-circle dot) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT-34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT-35b, part of a possible planetary system around a metal-poor star, and CoRoT-36b on a misaligned orbit. We find that 0.12 +/- 0.10 per cent of IMSs between 1.3 <= M-* <= 1.6 M-circle dot observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency (0.70 +/- 0.16 per cent) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets (similar to 8 per cent).
2022
Inglese
Esperti anonimi
516
1
636
655
20
https://academic.oup.com/mnras/article/516/1/636/6653114
techniques: photometric; techniques: radial velocities; stars: early-type; stars: statistics
4 – prodotto già presente in altro archivio Open Access (arXiv, REPEC…)
262
21
D Sebastian; E W Guenther; M Deleuil; M Dorsch; U Heber; C Heuser; D Gandolfi; S Grziwa; H J Deeg; R Alonso; F Bouchy; Sz Csizmadia; F Cusano; M Fridl...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Sebastien_2022.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 6.47 MB
Formato Adobe PDF
6.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1948677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact