The digital transformation of agriculture has evolved various aspects of management into artificial intelligent systems for the sake of making value from the ever-increasing data originated from numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable potential to handle numerous challenges in the establishment of knowledge-based farming systems. The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing the recent scholarly literature based on keywords’ combinations of “machine learning” along with “crop management”, “water management”, “soil management”, and “livestock management”, and in accordance with PRISMA guidelines. Only journal papers were considered eligible that were published within 2018–2020. The results indicated that this topic pertains to different disciplines that favour convergence research at the international level. Furthermore, crop management was observed to be at the centre of attention. A plethora of machine learning algorithms were used, with those belonging to Artificial Neural Networks being more efficient. In addition, maize and wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally, a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential advantages of using machine learning in agriculture and contributing to a more systematic research on this topic. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Machine learning in agriculture: A comprehensive updated review

Berruto, Remigio;Bochtis, Dionysis
2021-01-01

Abstract

The digital transformation of agriculture has evolved various aspects of management into artificial intelligent systems for the sake of making value from the ever-increasing data originated from numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable potential to handle numerous challenges in the establishment of knowledge-based farming systems. The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing the recent scholarly literature based on keywords’ combinations of “machine learning” along with “crop management”, “water management”, “soil management”, and “livestock management”, and in accordance with PRISMA guidelines. Only journal papers were considered eligible that were published within 2018–2020. The results indicated that this topic pertains to different disciplines that favour convergence research at the international level. Furthermore, crop management was observed to be at the centre of attention. A plethora of machine learning algorithms were used, with those belonging to Artificial Neural Networks being more efficient. In addition, maize and wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally, a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential advantages of using machine learning in agriculture and contributing to a more systematic research on this topic. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
2021
21
11
1
55
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106624124&doi=10.3390/s21113758&partnerID=40&md5=7fe8a25ba23c1c45d6ff8a233e98d258
Artificial intelligence; Crop management; Livestock management; Machine learning; Precision agriculture; Precision livestock farming; Soil management; Water management
Benos, Lefteris; Tagarakis, Aristotelis C.; Dolias, Georgios; Berruto, Remigio ;Kateris, Dimitrios; Bochtis, Dionysis
File in questo prodotto:
File Dimensione Formato  
sensors-21-03758-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 7.85 MB
Formato Adobe PDF
7.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1949426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 257
  • ???jsp.display-item.citation.isi??? 167
social impact