: Despite novel biological targets emerging at an impressive rate for anticancer therapy, antitubulin drugs remain the backbone of numerous oncological protocols and their efficacy has been demonstrated in a wide variety of adult and pediatric cancers. In the present contribution, we set to develop analogs of a potent but neglected antitubulin agent, TN-16, originally discovered via modification of tenuazonic acid (3-acetyl-5-sec-butyltetramic acid). To this extent, we developed a novel multicomponent reaction to prepare TN-16, and then we applied the same reaction for the synthesis of aza-analogs. In brief, we prepared a library of 62 novel compounds, and three of these retained nanomolar potencies. TN-16 and the active analogs are cytotoxic on cancer cell lines and, as expected from antitubulin agents, induce G2/M cell cycle arrest. These agents lead to a disruption of the microtubules and an increase in α-tubulin acetylation and affect in vitro polymerization, although they have a lesser effect in cellular tubulin polymerization assays.
Identification of novel aza-analogs of TN-16 as disrupters of microtubule dynamics through a multicomponent reaction
Genazzani, Armando A;Galli, Ubaldina
;Tron, Gian Cesare
2023-01-01
Abstract
: Despite novel biological targets emerging at an impressive rate for anticancer therapy, antitubulin drugs remain the backbone of numerous oncological protocols and their efficacy has been demonstrated in a wide variety of adult and pediatric cancers. In the present contribution, we set to develop analogs of a potent but neglected antitubulin agent, TN-16, originally discovered via modification of tenuazonic acid (3-acetyl-5-sec-butyltetramic acid). To this extent, we developed a novel multicomponent reaction to prepare TN-16, and then we applied the same reaction for the synthesis of aza-analogs. In brief, we prepared a library of 62 novel compounds, and three of these retained nanomolar potencies. TN-16 and the active analogs are cytotoxic on cancer cell lines and, as expected from antitubulin agents, induce G2/M cell cycle arrest. These agents lead to a disruption of the microtubules and an increase in α-tubulin acetylation and affect in vitro polymerization, although they have a lesser effect in cellular tubulin polymerization assays.File | Dimensione | Formato | |
---|---|---|---|
fourotan.pdf
Accesso riservato
Dimensione
5.17 MB
Formato
Adobe PDF
|
5.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.