Implicit definitions have been much discussed in the history and philosophy of science in relation to logical positivism. Not only have the logical positivists been influential in establishing this notion, but they have addressed the main problems connected with the use of such definitions, in particular the question whether there can be such definitions, and the problem of delimiting their scope. This paper aims to draw further insights on implicit definitions from the development of this notion from its first occurrence in German language in Enriques’s “Principles of Geometry” (1907) to Schlick’s General Theory of Knowledge (1918). Enriques was one of the first to acknowledge that implicit definitions in mathematics are possible only for higher-order entities or structures, which can have infinitely many interpretations in terms of physical objects. While Schlick introduced coordinating principles to account for the scientific interpretations of implicit definitions, Enriques addressed the problem of bridging the gap between abstract and concrete terms in a different way: He identified, within mathematics, structural patterns that provide a clarification of conceptual relations, and so also serve (indirectly) the purposes of applied mathematics. My suggestion is that Enriques’s analysis of these patterns deserves deeper consideration also from a contemporary perspective on mathematical concept formation.
Federigo Enriques and the Philosophical Background to the Discussion of Implicit Definitions
Francesca Biagioli
2023-01-01
Abstract
Implicit definitions have been much discussed in the history and philosophy of science in relation to logical positivism. Not only have the logical positivists been influential in establishing this notion, but they have addressed the main problems connected with the use of such definitions, in particular the question whether there can be such definitions, and the problem of delimiting their scope. This paper aims to draw further insights on implicit definitions from the development of this notion from its first occurrence in German language in Enriques’s “Principles of Geometry” (1907) to Schlick’s General Theory of Knowledge (1918). Enriques was one of the first to acknowledge that implicit definitions in mathematics are possible only for higher-order entities or structures, which can have infinitely many interpretations in terms of physical objects. While Schlick introduced coordinating principles to account for the scientific interpretations of implicit definitions, Enriques addressed the problem of bridging the gap between abstract and concrete terms in a different way: He identified, within mathematics, structural patterns that provide a clarification of conceptual relations, and so also serve (indirectly) the purposes of applied mathematics. My suggestion is that Enriques’s analysis of these patterns deserves deeper consideration also from a contemporary perspective on mathematical concept formation.File | Dimensione | Formato | |
---|---|---|---|
Biagioli interepisteme clear.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
333.8 kB
Formato
Adobe PDF
|
333.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.