α-Lactalbumin (α-LA), which is encoded by the LALBA gene, is a major whey protein that binds to Ca2+ and facilitates lactose synthesis as a regulatory subunit of the synthase enzyme complex. In addition, it has been shown to play central roles in immune modulation, cell-growth regulation, and antimicrobial activity. In this study, a multitechnical approach was used to fully characterize the LALBA gene and its variants in both coding and regulatory regions for domestic camelids (dromedary, Bactrian camel, alpaca, and llama). The gene analysis revealed a conserved structure among the camelids, but a slight difference in size (2,012 bp on average) due to intronic variations. Promoters were characterized for the transcription factor binding sites (11 found in total). Intraspecies sequence comparison showed 36 SNPs in total (2 in the dromedary, none in the Bactrian camel, 22 in the alpaca, and 12 in the llama), whereas interspecies comparison showed 86 additional polymorphic sites. Eight SNPs were identified as trans-specific polymorphisms, and 2 of them (g.112A>G and g.1229A>G) were particularly interesting in the New World camels. The first creates a new binding site for transcription factor SP1. An enhancing effect of the g.112G variant on the expression was demonstrated by 3 independent pGL3 gene reporter assays. The latter is responsible for the p.78Ile>Val AA replacement and represents novel allelic variants (named LALBA A and B). A link to protein variants has been established by isoelectric focusing (IEF), and bioinformatics analysis revealed that carriers of valine (g.1229G) have a higher glycosylation rate. Genotyping methods based on restriction fragment length polymorphism (PCR-RFLP) were set up for both SNPs. Overall, adenine was more frequent (0.54 and 0.76) at both loci. Four haplotypes were found, and the AA and GA were the most common with a frequency of 0.403 and 0.365, respectively. Conversely, a putative biological gain characterizes the haplotype GG. Therefore, opportunities for rapid directional selection can be realized if this haplotype is associated with favorable milk protein properties. This study adds knowledge at the gene and protein level for α-LA (LALBA) in camelids and importantly contributes to a relatively unexplored research area in these species.

Genetic variability among and within domestic Old and New World camels at the α-lactalbumin gene (LALBA) reveals new alleles and polymorphisms responsible for differential expression

Pauciullo, A.
First
;
Versace, C.;Miretti, S.;Gaspa, G.;Letaief, N.;Cosenza, G.
2024-01-01

Abstract

α-Lactalbumin (α-LA), which is encoded by the LALBA gene, is a major whey protein that binds to Ca2+ and facilitates lactose synthesis as a regulatory subunit of the synthase enzyme complex. In addition, it has been shown to play central roles in immune modulation, cell-growth regulation, and antimicrobial activity. In this study, a multitechnical approach was used to fully characterize the LALBA gene and its variants in both coding and regulatory regions for domestic camelids (dromedary, Bactrian camel, alpaca, and llama). The gene analysis revealed a conserved structure among the camelids, but a slight difference in size (2,012 bp on average) due to intronic variations. Promoters were characterized for the transcription factor binding sites (11 found in total). Intraspecies sequence comparison showed 36 SNPs in total (2 in the dromedary, none in the Bactrian camel, 22 in the alpaca, and 12 in the llama), whereas interspecies comparison showed 86 additional polymorphic sites. Eight SNPs were identified as trans-specific polymorphisms, and 2 of them (g.112A>G and g.1229A>G) were particularly interesting in the New World camels. The first creates a new binding site for transcription factor SP1. An enhancing effect of the g.112G variant on the expression was demonstrated by 3 independent pGL3 gene reporter assays. The latter is responsible for the p.78Ile>Val AA replacement and represents novel allelic variants (named LALBA A and B). A link to protein variants has been established by isoelectric focusing (IEF), and bioinformatics analysis revealed that carriers of valine (g.1229G) have a higher glycosylation rate. Genotyping methods based on restriction fragment length polymorphism (PCR-RFLP) were set up for both SNPs. Overall, adenine was more frequent (0.54 and 0.76) at both loci. Four haplotypes were found, and the AA and GA were the most common with a frequency of 0.403 and 0.365, respectively. Conversely, a putative biological gain characterizes the haplotype GG. Therefore, opportunities for rapid directional selection can be realized if this haplotype is associated with favorable milk protein properties. This study adds knowledge at the gene and protein level for α-LA (LALBA) in camelids and importantly contributes to a relatively unexplored research area in these species.
2024
107
2
1068
1084
https://www.journalofdairyscience.org/article/S0022-0302(23)02004-0/fulltext
SNPs; alpha-lactalbumin; camelid; genotyping; whey protein
Pauciullo, A.; Versace, C.; Miretti, S.; Giambra, I.J.; Gaspa, G.; Letaief, N.; Cosenza, G.
File in questo prodotto:
File Dimensione Formato  
81 - Pauciullo et al., 2024 - JDS.pdf

Accesso aperto

Descrizione: PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 825.36 kB
Formato Adobe PDF
825.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1955631
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact