Mota et al. show that poor response to immune checkpoint blockade in mouse models of ALK-rearranged NSCLC can be overcome by vaccination with an immunogenic ALK peptide and identify immunogenic human ALK peptides for future translational study.Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK(+) tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8(+) T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK(+) NSCLC to ICIs was due to ineffective CD8(+) T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8(+) T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK(+) NSCLC.

ALK peptide vaccination restores the immunogenicity of ALK-rearranged non-small cell lung cancer

Mota, Ines;Patrucco, Enrico;Mastini, Cristina;Bergaggio, Elisa;Campisi, Marco;Poggio, Teresa;Menotti, Matteo;Ambrogio, Chiara;Longo, Dario L;Voena, Claudia;Chiarle, Roberto
2023-01-01

Abstract

Mota et al. show that poor response to immune checkpoint blockade in mouse models of ALK-rearranged NSCLC can be overcome by vaccination with an immunogenic ALK peptide and identify immunogenic human ALK peptides for future translational study.Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK(+) tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8(+) T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK(+) NSCLC to ICIs was due to ineffective CD8(+) T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8(+) T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK(+) NSCLC.
2023
4
7
1016
1035
Mota, Ines; Patrucco, Enrico; Mastini, Cristina; Mahadevan, Navin R; Thai, Tran C; Bergaggio, Elisa; Cheong, Taek-Chin; Leonardi, Giulia; Karaca-Ataba...espandi
File in questo prodotto:
File Dimensione Formato  
Mota et al_Nature Cancer.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 27.18 MB
Formato Adobe PDF
27.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1956158
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact