In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.
Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm
S. De Marchi;G. Elefante;
2020-01-01
Abstract
In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
revised_version.pdf
Accesso riservato
Dimensione
428.86 kB
Formato
Adobe PDF
|
428.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Treating_the_Gibbs_phenomenon_in_barycentric_rational_interpolation_and_approximation_via_the_S-Gibbs_algorithm-1.pdf
Accesso riservato
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.