In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.

Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

S. De Marchi;G. Elefante;
2020-01-01

Abstract

In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions.
2020
103
106196
106196
https://www.sciencedirect.com/science/article/abs/pii/S0893965919305257
Barycentric rational interpolation; Gibbs phenomenon; Floater-Hormann interpolant; AAA algorithm; fake nodes
J. -P. Berrut; S. De Marchi; G. Elefante; F. Marchetti
File in questo prodotto:
File Dimensione Formato  
revised_version.pdf

Accesso riservato

Dimensione 428.86 kB
Formato Adobe PDF
428.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Treating_the_Gibbs_phenomenon_in_barycentric_rational_interpolation_and_approximation_via_the_S-Gibbs_algorithm-1.pdf

Accesso riservato

Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1956176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact