In this paper, we collect the basic theory and the most important applications of a novel technique that has shown to be suitable for scattered data interpolation, quadrature, bio-imaging reconstruction. The method relies on polynomial mapped bases allowing, for instance, to incorporate data or function discontinuities in a suitable mapping function. The new technique substantially mitigates the Runge’s and Gibbs effects.

Polynomial mapped bases: theory and applications

Stefano De Marchi;Giacomo Elefante;
2022-01-01

Abstract

In this paper, we collect the basic theory and the most important applications of a novel technique that has shown to be suitable for scattered data interpolation, quadrature, bio-imaging reconstruction. The method relies on polynomial mapped bases allowing, for instance, to incorporate data or function discontinuities in a suitable mapping function. The new technique substantially mitigates the Runge’s and Gibbs effects.
2022
13
1
9
https://sciendo.com/article/10.2478/caim-2022-0001
mapped basisGibbs phenomenonRunge’s phenomenonfake nodes
Stefano De Marchi; Giacomo Elefante; Elisa Francomano; Francesco Marchetti
File in questo prodotto:
File Dimensione Formato  
PaperDEFM.pdf

Accesso riservato

Dimensione 422.75 kB
Formato Adobe PDF
422.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1956181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact