Recently, (β,γ)-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of [−1,1], which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of (β,γ)-Chebyshev functions in the corresponding orthogonality interval.

More properties of (β,γ)-Chebyshev functions and points

De Marchi S.;Elefante G.;
2023-01-01

Abstract

Recently, (β,γ)-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of [−1,1], which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of (β,γ)-Chebyshev functions in the corresponding orthogonality interval.
2023
528
2
127603
127603
(β; γ)-Chebyshev functions; Chebyshev polynomials; Lebesgue constant; Orthogonal functions
De Marchi S.; Elefante G.; Marchetti F.; Mariethoz J. -Z.
File in questo prodotto:
File Dimensione Formato  
More_properties_of_beta_gamma_Chebyshev_functions_and_points.pdf

Accesso riservato

Dimensione 374.76 kB
Formato Adobe PDF
374.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1956187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact