GrPPI library aims to simplify the burdening task of parallel programming. It provides a unified, abstract, and generic layer while promising minimal overhead on performance. Although it supports stream parallelism, GrPPI lacks an evaluation regarding representative performance metrics for this domain, such as throughput and latency. This work evaluates GrPPI focused on parallel stream processing. We compare the throughput and latency performance, memory usage, and programmability of GrPPI against handwritten parallel code. For this, we use the benchmarking framework SPBench to build custom GrPPI benchmarks and benchmarks with handwritten parallel code using the same backends supported by GrPPI. The basis of the benchmarks is real applications, such as Lane Detection, Bzip2, Face Recognizer, and Ferret. Experiments show that while performance is often competitive with handwritten parallel code, the infeasibility of fine-tuning GrPPI is a crucial drawback for emerging applications. Despite this, programmability experiments estimate that GrPPI can potentially reduce the development time of parallel applications by about three times.

Performance and programmability of GrPPI for parallel stream processing on multi-cores

Garcia, Adriano Marques
First
;
2024-01-01

Abstract

GrPPI library aims to simplify the burdening task of parallel programming. It provides a unified, abstract, and generic layer while promising minimal overhead on performance. Although it supports stream parallelism, GrPPI lacks an evaluation regarding representative performance metrics for this domain, such as throughput and latency. This work evaluates GrPPI focused on parallel stream processing. We compare the throughput and latency performance, memory usage, and programmability of GrPPI against handwritten parallel code. For this, we use the benchmarking framework SPBench to build custom GrPPI benchmarks and benchmarks with handwritten parallel code using the same backends supported by GrPPI. The basis of the benchmarks is real applications, such as Lane Detection, Bzip2, Face Recognizer, and Ferret. Experiments show that while performance is often competitive with handwritten parallel code, the infeasibility of fine-tuning GrPPI is a crucial drawback for emerging applications. Despite this, programmability experiments estimate that GrPPI can potentially reduce the development time of parallel applications by about three times.
2024
1
35
https://doi.org/10.1007/s11227-024-05934-z
Stream parallelism, GrPPI, SPBench, OpenMP, Intel TBB, FastFlow
Garcia, Adriano Marques; Griebler, Dalvan; Schepke, Claudio; García, José Daniel; Muñoz, Javier Fernández; Fernandes, Luiz Gustavo...espandi
File in questo prodotto:
File Dimensione Formato  
s11227-024-05934-z.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1958891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact