Bottom Ashes from Municipal Solid Waste Incinerators and Waste to Energy plants represent an interesting source of secondary raw materials for many applications, like urban mining and inclusion in concrete, and road pavement. However, Bottom Ashes may contain potentially toxic elements, whose actual toxicity depends essentially on their oxidation state and mineralogical environment. For this reason, a representative sample of bottom ashes from Parma Waste to Energy plant has been selected to investigate the chemical speciation of Cr, Ni, Pb, Co, Zn and Cu by means of complementary techniques: Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS), micro X-Ray Fluorescence (µ-XRF) mapping and X-Ray Absorption Near Edge Structure (XANES) measurements by synchrotron radiation. This multi-technique approach allowed to obtain a general image of the mineralogical and chemical environment in which these elements are found. SEM-EDS analyses show the presence of Zn and Pb both in minerals and in glass matrix. Cr has been detected in the form of oxide and in spinel structure (chromite) whereas Co and Cu are found as alloy or metal inclusions. µ-XRF mapping reveals that Cu, Ni and Cr are generally associated to Na, K and Si suggesting their presence in glass matrix. XANES investigations exhibit that Cu has a variable oxidation state that suggesting its presence in the form of oxide, hydroxide, acetate and metal. Zn is mainly found as +II and in a number of different phases (including Zn-carbonates, in agreement with SEM-EDS data). Cr has been found only as +III, with XANES features resembling those of chromite, whereas as +VI was never identified. Ni and Co were found either as metal form and oxides. Pb spectra show a good match with oxides.

Potentially toxic elements speciation in bottom ashes from a municipal solid waste incinerator: A combined SEM-EDS, µ-XRF and µ-XANES study

Tribaudino, M.
Last
2024-01-01

Abstract

Bottom Ashes from Municipal Solid Waste Incinerators and Waste to Energy plants represent an interesting source of secondary raw materials for many applications, like urban mining and inclusion in concrete, and road pavement. However, Bottom Ashes may contain potentially toxic elements, whose actual toxicity depends essentially on their oxidation state and mineralogical environment. For this reason, a representative sample of bottom ashes from Parma Waste to Energy plant has been selected to investigate the chemical speciation of Cr, Ni, Pb, Co, Zn and Cu by means of complementary techniques: Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDS), micro X-Ray Fluorescence (µ-XRF) mapping and X-Ray Absorption Near Edge Structure (XANES) measurements by synchrotron radiation. This multi-technique approach allowed to obtain a general image of the mineralogical and chemical environment in which these elements are found. SEM-EDS analyses show the presence of Zn and Pb both in minerals and in glass matrix. Cr has been detected in the form of oxide and in spinel structure (chromite) whereas Co and Cu are found as alloy or metal inclusions. µ-XRF mapping reveals that Cu, Ni and Cr are generally associated to Na, K and Si suggesting their presence in glass matrix. XANES investigations exhibit that Cu has a variable oxidation state that suggesting its presence in the form of oxide, hydroxide, acetate and metal. Zn is mainly found as +II and in a number of different phases (including Zn-carbonates, in agreement with SEM-EDS data). Cr has been found only as +III, with XANES features resembling those of chromite, whereas as +VI was never identified. Ni and Co were found either as metal form and oxides. Pb spectra show a good match with oxides.
2024
15
100453
100466
https://www.sciencedirect.com/science/article/pii/S2666765723001114?via=ihub
Municipal solid waste incinerator bottom ash Potentially toxic element, Chemical-mineralogical characterization, X-ray absorption near edge structure, Speciation, Leaching
De Matteis, C.; Pollastri, S.; Mantovani, L.; Tribaudino, M.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666765723001114-main.pdf

Accesso aperto

Descrizione: testo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 7.87 MB
Formato Adobe PDF
7.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1962798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact