Most current Artificial Intelligence applications are based on supervised Machine Learning (ML), which ultimately grounds on data annotated by small teams of experts or large ensemble of volunteers. The annotation process is often performed in terms of a majority vote, however this has been proved to be often problematic by recent evaluation studies. In this article, we describe and advocate for a different paradigm, which we call perspectivism: this counters the removal of disagreement and, consequently, the assumption of correctness of traditionally aggregated gold-standard datasets, and proposes the adoption of methods that preserve divergence of opinions and integrate multiple perspectives in the ground truthing process of ML development. Drawing on previous works which inspired it, mainly from the crowdsourcing and multi-rater labeling settings, we survey the state-of-the-art and describe the potential of our proposal for not only the more subjective tasks (e.g. those related to human language) but also those tasks commonly understood as objective (e.g. medical decision making). We present the main benefits of adopting a perspectivist stance in ML, as well as possible disadvantages, and various ways in which such a stance can be implemented in practice. Finally, we share a set of recommendations and outline a research agenda to advance the perspectivist stance in ML.

Toward a Perspectivist Turn in Ground Truthing for Predictive Computing

Basile Valerio
2023-01-01

Abstract

Most current Artificial Intelligence applications are based on supervised Machine Learning (ML), which ultimately grounds on data annotated by small teams of experts or large ensemble of volunteers. The annotation process is often performed in terms of a majority vote, however this has been proved to be often problematic by recent evaluation studies. In this article, we describe and advocate for a different paradigm, which we call perspectivism: this counters the removal of disagreement and, consequently, the assumption of correctness of traditionally aggregated gold-standard datasets, and proposes the adoption of methods that preserve divergence of opinions and integrate multiple perspectives in the ground truthing process of ML development. Drawing on previous works which inspired it, mainly from the crowdsourcing and multi-rater labeling settings, we survey the state-of-the-art and describe the potential of our proposal for not only the more subjective tasks (e.g. those related to human language) but also those tasks commonly understood as objective (e.g. medical decision making). We present the main benefits of adopting a perspectivist stance in ML, as well as possible disadvantages, and various ways in which such a stance can be implemented in practice. Finally, we share a set of recommendations and outline a research agenda to advance the perspectivist stance in ML.
2023
National Conference of the American Association for Artificial Intelligence
Washington D.C.
2023
Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
AAAI Press
37
6860
6868
978-1-57735-880-0
https://ojs.aaai.org/index.php/AAAI/article/view/25840/25612
Cabitza Federico; Campagner Andrea; Basile Valerio
File in questo prodotto:
File Dimensione Formato  
25840-Article Text-29903-1-2-20230626.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 222.04 kB
Formato Adobe PDF
222.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1963527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? ND
social impact