Objectives: Phenylalanine (Phe) hydroxylase (PAH) deficiency leads to hyperphenylalaninemia (HPA) and tyrosine (Tyr) depletion. We investigated Tyr homeostasis in patients with PAH deficiency and the effect of a slow-release amino acids therapy in phenylketonuria (PKU). Methods: We performed four complementary investigations: (1) Tyr concentrations were monitored in 114 patients (10.6 ± 11.9 years) with PKU on dietary treatment supplemented with traditional amino acid formulations (n=52, 1175 samples) or non-PKU HPA on a free diet (n=62, 430 samples); (2) Tyr metabolism in PKU was quantitatively evaluated in three patients by a simple Tyr oral loading test (100 mg/kg); (3) diurnal and (4) long-term Tyr concentrations were evaluated in 5 and 13 patients with PKU, respectively, who switched from traditional to slow-release amino acids therapy. Results: 1) Tyr concentrations in the PKU population were subnormal and significantly lower than in non-PKU HPA (p<0.01); (2) the response to a Tyr loading test in PKU was normal, with basal Tyr concentrations reached within 12 h; (3) the diurnal metabolic profile in patients on slow-release amino acids therapy revealed higher morning fasting and nocturnal Tyr concentrations with respect to traditional therapy (p<0.01); (4) this picture was confirmed at followup, with normalization of morning fasting Tyr concentrations in patients on slow-release amino acids therapy (p<0.01) and unchanged Phe control (p=0.19). Conclusions: Slow-release amino acids therapy can improve Tyr homeostasis in PKU. If associated to optimized Phe control, such a metabolic goal may allow long-term clinical benefits in patients with PKU.
Tyrosine metabolism in health and disease: Slow-release amino acids therapy improves tyrosine homeostasis in phenylketonuria
Porta F.
First
;Giorda S.;Ponzone A.;Spada M.Last
2020-01-01
Abstract
Objectives: Phenylalanine (Phe) hydroxylase (PAH) deficiency leads to hyperphenylalaninemia (HPA) and tyrosine (Tyr) depletion. We investigated Tyr homeostasis in patients with PAH deficiency and the effect of a slow-release amino acids therapy in phenylketonuria (PKU). Methods: We performed four complementary investigations: (1) Tyr concentrations were monitored in 114 patients (10.6 ± 11.9 years) with PKU on dietary treatment supplemented with traditional amino acid formulations (n=52, 1175 samples) or non-PKU HPA on a free diet (n=62, 430 samples); (2) Tyr metabolism in PKU was quantitatively evaluated in three patients by a simple Tyr oral loading test (100 mg/kg); (3) diurnal and (4) long-term Tyr concentrations were evaluated in 5 and 13 patients with PKU, respectively, who switched from traditional to slow-release amino acids therapy. Results: 1) Tyr concentrations in the PKU population were subnormal and significantly lower than in non-PKU HPA (p<0.01); (2) the response to a Tyr loading test in PKU was normal, with basal Tyr concentrations reached within 12 h; (3) the diurnal metabolic profile in patients on slow-release amino acids therapy revealed higher morning fasting and nocturnal Tyr concentrations with respect to traditional therapy (p<0.01); (4) this picture was confirmed at followup, with normalization of morning fasting Tyr concentrations in patients on slow-release amino acids therapy (p<0.01) and unchanged Phe control (p=0.19). Conclusions: Slow-release amino acids therapy can improve Tyr homeostasis in PKU. If associated to optimized Phe control, such a metabolic goal may allow long-term clinical benefits in patients with PKU.File | Dimensione | Formato | |
---|---|---|---|
10.1515_jpem-2020-0319.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
290.54 kB
Formato
Adobe PDF
|
290.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.