For every $n\geq 3$, we find a sufficient condition for the blow-up of a weighted projective space $\mathbb{P}(a,b,c,d_1,\cdots,d_{n-2})$ at the identity point not to be a Mori Dream Space. We exhibit several infinite sequences of weights satisfying this condition in all dimensions $n\geq 3$.

Mori Dream Spaces and blow-ups of weighted projective spaces

Zhuang He
2018-01-01

Abstract

For every $n\geq 3$, we find a sufficient condition for the blow-up of a weighted projective space $\mathbb{P}(a,b,c,d_1,\cdots,d_{n-2})$ at the identity point not to be a Mori Dream Space. We exhibit several infinite sequences of weights satisfying this condition in all dimensions $n\geq 3$.
2018
223
10
4426
4445
http://arxiv.org/abs/1803.11536v2
Algebraic Geometry, toric variety
Zhuang He
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1978971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact