In the last years the agricultural sector has been evolving and new technologies, like Unmanned Aerial Vehicles (UAV) and satellites, were introduced to increase crop management efficiency, reducing environmental costs and improving farmers’ income. MAIA-S2 sensor is presently one of the most performing optical sensors operating on a Remotely Piloted Aircraft Systems (RPAS); given its spectral features, it aims at supporting a scaling process where monoscopic satellite data (namely Copernicus S2) with high temporal and limited geometric resolution can be integrated with stereoscopic data from RPAS having a very high spatial resolution. In this work, data from MAIA-S2 sensor were used to detect the effects of different fertilization types on corn with reference to a test field located in Carignano (Piemonte region, NW-Italy). Different amounts of top dressing fertilization were applied on corn and an RPAS acquisition operated on 14th June 2021 (corresponding date to the corn stem elongation stage) to explore if any effects could be detectable. Three spectral indices, namely Normalized Difference Vegetation Index, Normalized Difference Red Edge index and Canopy Height Model, computed from at-the-ground reflectance calibrated MAIA-S2 data, were compared to evaluate the correspondent response to the different fertilization rates. Results show that: (i) NDVI poorly detect N-related differences zones; (ii) NDRE and CHM reasonably reflect the different N fertilization doses; (iii) Only CHM proved to be able to detect crop height and, consequently, biomass differences that are known to be induced by different rates of fertilization.

Geometric vs spectral content of Remotely Piloted Aircraft Systems images in the Precision agriculture context

Sarvia, Filippo
First
;
De Petris, Samuele;Farbo, Alessandro;Borgogno-Mondino, Enrico
Last
2024-01-01

Abstract

In the last years the agricultural sector has been evolving and new technologies, like Unmanned Aerial Vehicles (UAV) and satellites, were introduced to increase crop management efficiency, reducing environmental costs and improving farmers’ income. MAIA-S2 sensor is presently one of the most performing optical sensors operating on a Remotely Piloted Aircraft Systems (RPAS); given its spectral features, it aims at supporting a scaling process where monoscopic satellite data (namely Copernicus S2) with high temporal and limited geometric resolution can be integrated with stereoscopic data from RPAS having a very high spatial resolution. In this work, data from MAIA-S2 sensor were used to detect the effects of different fertilization types on corn with reference to a test field located in Carignano (Piemonte region, NW-Italy). Different amounts of top dressing fertilization were applied on corn and an RPAS acquisition operated on 14th June 2021 (corresponding date to the corn stem elongation stage) to explore if any effects could be detectable. Three spectral indices, namely Normalized Difference Vegetation Index, Normalized Difference Red Edge index and Canopy Height Model, computed from at-the-ground reflectance calibrated MAIA-S2 data, were compared to evaluate the correspondent response to the different fertilization rates. Results show that: (i) NDVI poorly detect N-related differences zones; (ii) NDRE and CHM reasonably reflect the different N fertilization doses; (iii) Only CHM proved to be able to detect crop height and, consequently, biomass differences that are known to be induced by different rates of fertilization.
2024
27
3
524
531
Precision farmingUAVRPASSpectral index
Sarvia, Filippo; De Petris, Samuele; Farbo, Alessandro; Borgogno-Mondino, Enrico
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1110982324000498-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 6.24 MB
Formato Adobe PDF
6.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1992391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact