Despite significant research efforts, deep neural networks remain vulnerable to biases: this raises concerns about their fairness and limits their generalization. In this paper, we propose a bias-agnostic approach to mitigate the impact of biases in deep neural networks. Unlike traditional debiasing approaches, we rely on a metric to quantify "bias alignment/misalignment" on target classes and use this information to discourage the propagation of bias-target alignment information through the network. We conduct experiments on several commonly used datasets for debiasing and compare our method with supervised and bias-specific approaches. Our results indicate that the proposed method achieves comparable performance to state-of-the-art supervised approaches, despite being bias-agnostic, even in the presence of multiple biases in the same sample.

Mining bias-target Alignment from Voronoi Cells

Tartaglione, Enzo
2023-01-01

Abstract

Despite significant research efforts, deep neural networks remain vulnerable to biases: this raises concerns about their fairness and limits their generalization. In this paper, we propose a bias-agnostic approach to mitigate the impact of biases in deep neural networks. Unlike traditional debiasing approaches, we rely on a metric to quantify "bias alignment/misalignment" on target classes and use this information to discourage the propagation of bias-target alignment information through the network. We conduct experiments on several commonly used datasets for debiasing and compare our method with supervised and bias-specific approaches. Our results indicate that the proposed method achieves comparable performance to state-of-the-art supervised approaches, despite being bias-agnostic, even in the presence of multiple biases in the same sample.
2023
IEEE International Conference on Computer Vision
Parigi
02/10/2023
Proceedings of the IEEE International Conference on Computer Vision
IEEE COMPUTER SOC
4923
4932
Nahon, Rémi; Nguyen, Van-Tam; Tartaglione, Enzo
File in questo prodotto:
File Dimensione Formato  
2305.03691v1.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1992971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact