This work introduces MPAI-SPG, a novel approach to mitigate latency and detect cheating in online gaming through server-based prediction. The paper reports the implementation of this approach in an online racing game. Using machine learning, we developed a prediction module trained on a custom-built dataset, which is publicly available. Experimental sessions with real players were conducted to assess prediction accuracy and the overall solution's effectiveness in ensuring smooth multiplayer gaming despite data absence. The results demonstrate MPAI-SPG's potential to enhance the gaming experience amidst network challenges. The approach allows for continuous improvement in prediction accuracy, leveraging new training techniques.
AI Server-Side Prediction for Latency Mitigation and Cheating Detection: The MPAI-SPG Approach
Bottino, Andrea;Cavagnino, Davide;Lucenteforte, Maurizio;Mazzaglia, Marco;
2024-01-01
Abstract
This work introduces MPAI-SPG, a novel approach to mitigate latency and detect cheating in online gaming through server-based prediction. The paper reports the implementation of this approach in an online racing game. Using machine learning, we developed a prediction module trained on a custom-built dataset, which is publicly available. Experimental sessions with real players were conducted to assess prediction accuracy and the overall solution's effectiveness in ensuring smooth multiplayer gaming despite data absence. The results demonstrate MPAI-SPG's potential to enhance the gaming experience amidst network challenges. The approach allows for continuous improvement in prediction accuracy, leveraging new training techniques.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



