Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While these data offer invaluable insights about wildlife, their analysis can present challenges in dealing with geophonic sources. A major issue in the process of detection of target sounds is represented by wind-induced noise. This can lead to false positive detections, i.e., energy peaks due to wind gusts misclassified as biological sounds, or false negative, i.e., the wind noise masks the presence of biological sounds. Acoustic data dominated by wind noise makes the analysis of vocal activity unreliable, thus compromising the detection of target sounds and, subsequently, the interpretation of the results. Our work introduces a straightforward approach for detecting recordings affected by windy events using a pre-trained convolutional neural network. This process facilitates identifying wind-compromised data. We consider this dataset pre-processing crucial for ensuring the reliable use of PAM data. We implemented this preprocessing by leveraging YAMNet, a deep learning model for sound classification tasks. We evaluated YAMNet as-is ability to detect wind-induced noise and tested its performance in a Transfer Learning scenario by using our annotated data from the Stony Point Penguin Colony in South Africa. While the classification of YAMNet as-is achieved a precision of 0.71, and recall of 0.66, those metrics strongly improved after the training on our annotated dataset, reaching a precision of 0.91, and recall of 0.92, corresponding to a relative increment of >28 %. Our study demonstrates the promising application of YAMNet in the bioacoustics and ecoacoustics fields, addressing the need for wind-noise-free acoustic data. We released an open-access code that, combined with the efficiency and peak performance of YAMNet, can be used on standard laptops for a broad user base.

Windy events detection in big bioacoustics datasets using a pre-trained Convolutional Neural Network

Terranova, Francesca
First
;
Ferrario, Valeria;Friard, Olivier;Favaro, Livio
Last
2024-01-01

Abstract

Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While these data offer invaluable insights about wildlife, their analysis can present challenges in dealing with geophonic sources. A major issue in the process of detection of target sounds is represented by wind-induced noise. This can lead to false positive detections, i.e., energy peaks due to wind gusts misclassified as biological sounds, or false negative, i.e., the wind noise masks the presence of biological sounds. Acoustic data dominated by wind noise makes the analysis of vocal activity unreliable, thus compromising the detection of target sounds and, subsequently, the interpretation of the results. Our work introduces a straightforward approach for detecting recordings affected by windy events using a pre-trained convolutional neural network. This process facilitates identifying wind-compromised data. We consider this dataset pre-processing crucial for ensuring the reliable use of PAM data. We implemented this preprocessing by leveraging YAMNet, a deep learning model for sound classification tasks. We evaluated YAMNet as-is ability to detect wind-induced noise and tested its performance in a Transfer Learning scenario by using our annotated data from the Stony Point Penguin Colony in South Africa. While the classification of YAMNet as-is achieved a precision of 0.71, and recall of 0.66, those metrics strongly improved after the training on our annotated dataset, reaching a precision of 0.91, and recall of 0.92, corresponding to a relative increment of >28 %. Our study demonstrates the promising application of YAMNet in the bioacoustics and ecoacoustics fields, addressing the need for wind-noise-free acoustic data. We released an open-access code that, combined with the efficiency and peak performance of YAMNet, can be used on standard laptops for a broad user base.
2024
Inglese
Esperti anonimi
949
949
174868
174868
1
https://www.sciencedirect.com/science/article/pii/S0048969724050174?via=ihub
Bioacoustics; Deep learning; Ecoacoustics; Passive Acoustic Monitoring; Soundscape ecology; Wind-noise
FRANCIA
AUSTRIA
REPUBBLICA SUDAFRICANA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
9
Terranova, Francesca; Betti, Lorenzo; Ferrario, Valeria; Friard, Olivier; Ludynia, Katrin; Petersen, Gavin Sean; Mathevon, Nicolas; Reby, David; Favar...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969724050174-main.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 4.44 MB
Formato Adobe PDF
4.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2003750
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact