We study Dolbeault harmonic (1, 1)-forms on compact quotients M = Gamma\G of 4-dimensional Lie groups G admitting a left invariant almost Hermitian structure (J, omega). In this case, we prove that the space of Dolbeault harmonic (1, 1)-forms on (M, J, omega) has dimension b(-) + 1 if and only if there exists a left invariant anti self dual (1, 1)-form gamma on (G, J) satisfying id(c)gamma =d omega. Otherwise, its dimension is b(-). In this way, we answer to a question by Zhang. (C) 2022 Elsevier B.V. All rights reserved.

Dolbeault harmonic (1,1)-forms on 4-dimensional compact quotients of Lie groups with a left invariant almost Hermitian structure

Piovani, Riccardo
2022-01-01

Abstract

We study Dolbeault harmonic (1, 1)-forms on compact quotients M = Gamma\G of 4-dimensional Lie groups G admitting a left invariant almost Hermitian structure (J, omega). In this case, we prove that the space of Dolbeault harmonic (1, 1)-forms on (M, J, omega) has dimension b(-) + 1 if and only if there exists a left invariant anti self dual (1, 1)-form gamma on (G, J) satisfying id(c)gamma =d omega. Otherwise, its dimension is b(-). In this way, we answer to a question by Zhang. (C) 2022 Elsevier B.V. All rights reserved.
2022
180
1
18
Dolbeault Laplacian; Invariant almost complex structure; 4-manifold
Piovani, Riccardo
File in questo prodotto:
File Dimensione Formato  
9) piovani almost dol harmonic invariant jgp.pdf

Accesso riservato

Dimensione 413.17 kB
Formato Adobe PDF
413.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2009450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact