For the following Neumann problem in a ball {-Delta(p)u + u(p-1) = u(q-1) in B, u > 0, u radial in B, partial derivative u/partial derivative nu = 0 on partial derivative B, with 1 < p < q < infinity, we prove continuous dependence on p, for radially nondecreasing solutions. As a byproduct, we obtain an existence result for nonconstant solutions in the case p is an element of (1,2) and q larger than an explicit threshold.

Continuous dependence for $ p $-Laplace equations with varying operators

Colasuonno, Francesca
;
Noris, Benedetta;
2024-01-01

Abstract

For the following Neumann problem in a ball {-Delta(p)u + u(p-1) = u(q-1) in B, u > 0, u radial in B, partial derivative u/partial derivative nu = 0 on partial derivative B, with 1 < p < q < infinity, we prove continuous dependence on p, for radially nondecreasing solutions. As a byproduct, we obtain an existence result for nonconstant solutions in the case p is an element of (1,2) and q larger than an explicit threshold.
2024
0
0
0
0
Quasilinear elliptic equations, Sobolev-supercritical nonlinearities, Neumann boundary conditions, radial solutions; ground state solutions
Colasuonno, Francesca; Noris, Benedetta; Sovrano, Elisa
File in questo prodotto:
File Dimensione Formato  
early_access-10.3934_dcdss.2024121.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 525.21 kB
Formato Adobe PDF
525.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2011410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact