We compute the asymptotic for the eigenvalues of a particular class of compact operators deeply linked with the second variation of optimal control problems. We characterize this family in terms of a set of finite dimensional data and we apply this results to a particular class of singular extremal to get a nice description of the spectrum of the second variation.

Operators Arising as Second Variation of Optimal Control Problems and Their Spectral Asymptotics

Stefano Baranzini
2023-01-01

Abstract

We compute the asymptotic for the eigenvalues of a particular class of compact operators deeply linked with the second variation of optimal control problems. We characterize this family in terms of a set of finite dimensional data and we apply this results to a particular class of singular extremal to get a nice description of the spectrum of the second variation.
2023
29
3
659
689
Second variation; Optimal control; Weyl law; Compact operator
Stefano Baranzini
File in questo prodotto:
File Dimensione Formato  
s10883-022-09605-1-2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 521.73 kB
Formato Adobe PDF
521.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2011430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact