We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times S<^>1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2xT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times T<^>2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.
Twisted index on hyperbolic four-manifolds
Pittelli A.
2024-01-01
Abstract
We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times S<^>1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2xT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times T<^>2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.File | Dimensione | Formato | |
---|---|---|---|
2307.11634v1.pdf
Accesso aperto
Dimensione
262.72 kB
Formato
Adobe PDF
|
262.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.