We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times S<^>1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2xT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times T<^>2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.

Twisted index on hyperbolic four-manifolds

Pittelli A.
2024-01-01

Abstract

We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times S<^>1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2xT2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times T<^>2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.
2024
114
2
N/A
N/A
Supersymmetry; Differential geometry; Gauge theory; Index theory; Dualities; Equivariant cohomology
Iannotti D.; Pittelli A.
File in questo prodotto:
File Dimensione Formato  
2307.11634v1.pdf

Accesso aperto

Dimensione 262.72 kB
Formato Adobe PDF
262.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2013691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact