In a previous paper two of us (D.M. and A.Z.) proposed that a vast class of gravitational extremization problems in holography can be formulated in terms of the equivariant volume of the internal geometry, or of the cone over it. We substantiate this claim by analysing supergravity solutions corresponding to branes partially or totally wrapped on a four-dimensional orbifold, both in M-theory as well as in type II supergravities. We show that our approach recovers the relevant gravitational central charges/free energies of several known supergravity solutions and can be used to compute these also for solutions that are not known explicitly. Moreover, we demonstrate the validity of previously conjectured gravitational block formulas for M5 and D4 branes. In the case of M5 branes we make contact with a recent approach based on localization of equivariant forms, constructed with Killing spinor bilinears.

Equivariant volume extremization and holography

Edoardo Colombo;Federico Faedo;Dario Martelli;Alberto Zaffaroni
2023-01-01

Abstract

In a previous paper two of us (D.M. and A.Z.) proposed that a vast class of gravitational extremization problems in holography can be formulated in terms of the equivariant volume of the internal geometry, or of the cone over it. We substantiate this claim by analysing supergravity solutions corresponding to branes partially or totally wrapped on a four-dimensional orbifold, both in M-theory as well as in type II supergravities. We show that our approach recovers the relevant gravitational central charges/free energies of several known supergravity solutions and can be used to compute these also for solutions that are not known explicitly. Moreover, we demonstrate the validity of previously conjectured gravitational block formulas for M5 and D4 branes. In the case of M5 branes we make contact with a recent approach based on localization of equivariant forms, constructed with Killing spinor bilinears.
2023
095
1
63
http://arxiv.org/abs/2309.04425v3
High Energy Physics - Theory; High Energy Physics - Theory; Mathematical Physics; Mathematics - Differential Geometry; Mathematics - Mathematical Physics
Edoardo Colombo; Federico Faedo; Dario Martelli; Alberto Zaffaroni
File in questo prodotto:
File Dimensione Formato  
JHEP01(2024)095.pdf

Accesso aperto

Dimensione 820.61 kB
Formato Adobe PDF
820.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2013770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact